
ISSN (e): 2250 – 3005 || Volume, 14 || Issue, 3|| May - June – 2024 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 209

CBSA: Clustering Based Sorting Algorithm

Omar Kettani

Scientific Institute, Mohammed V University

Rabat, Morocco

--- ----------

Date of Submission: 07-06-2024 Date of acceptance: 21-06-2024

--- ----------

I. Introduction
Sorting and clustering are two fundamental tools in the field of computer science. While sorting

consists to order data according to some linear relationship concerning the data, clustering aims to group data

objects into distinct groups, or clusters, such that the data objects within each cluster are more similar to one

another than they are to data objects in other clusters. With the exponential growth of data, the need for efficient

and scalable clustering and sorting algorithms has become increasingly pressing. Traditional sorting methods,

while still widely used, often struggle with the complexity and sheer size of modern data sets. In an effort to

address these challenges, a new sorting algorithm based on clustering has been developed. This algorithm

utilizes a clustering approach to data organization as a preprocessing phase, resulting in improved speed. The

purpose of this paper is to introduce this new sorting algorithm, provide an explanation of its inner workings,

evaluate its computational complexity and compare with the state of the art sorting algorithm.

This paper is organized as follows: In section II, some related work are presented. Section III describes

the pseudo-code of the proposed algorithm and provides an analysis of its computational complexity. Finally,

section IV discuss some future work and concludes the paper.

II. Related work
Sorting algorithms have been an active area of research in computer science for several decades, and

numerous sorting methods have been proposed to address the challenges of sorting large datasets efficiently and

accurately. Some of the most widely used sorting algorithms include QuickSort, MergeSort, and HeapSort,

RadixSort,BucketSort, TimSort and LibrarySort with complexities varying between O(nlogn) and O(n
2
). These

algorithms have different strengths and weaknesses in terms of time complexity, stability, and scalability.

QuickSort [1], for instance, is a fast sorting algorithm that uses the partitioning technique to sort data.

However, it is not stable, meaning that equal elements may not retain their relative order in the sorted result.

QuickSort is a divide-and-conquer algorithm that selects a pivot element and partitions the data around it. Its

advantages are: a fast average case performance, and a simplicity in its implementation. Its limitations are: its

worst-case performance can be slow, and it could be not stable.

MergeSort [2], on the other hand, is a stable sorting algorithm that uses the merging technique to sort

data, but it has a higher time complexity compared to QuickSort. MergeSort is a divide-and-conquer algorithm

that recursively splits the data into smaller sub-arrays, sorts them, and then combines them. Its strengths are:

stability, efficiency for large data sets, and suitability for both linked lists and arrays. Its weaknesses are:

slowness for small data sets due to overhead, non-efficiency for data that can't be easily divided into smaller

parts.

Abstract:This paper introduces CBSA, a new deterministic sequential sorting algorithm based on

clustering that addresses the challenge faced by existing sorting methods when dealing with large data

sets. This algorithm achieves in linear space a complexity of O(nloglog(n+1-(logloglogn))) time for

sorting n integer numbers and a complexity of O(n(log(n+1-(loglogn)
1/2

)
1/2

) time for sorting n real

numbers, improving the computational complexity of the state of the art sorting algorithm, for both

integer and real numbers. The paper concludes by discussing the potential of this new sorting

algorithm and the future directions for its development and refinement.

Keywords:Sorting; Clustering; Han's algorithm; computational complexity.

CBSA: Clustering Based Sorting Algorithm

www.ijceronline.com Open Access Journal Page 210

RadixSort [3], a non-comparison-based sorting algorithm that sorts data based on the digits of each

element. Its advantages are: efficiency for data with a large number of digits. Its limitations are: slowness for

large data sets, inefficiency for data with a small number of digits, inadaptivity.

BucketSort [4]: is a distribution-based sorting algorithm that sorts elements into buckets and then sorts

the buckets. Its strengths are: fastness for small data sets, efficiency for data with a limited number of values. Its

weaknesses are: slowness for large data sets, inefficiency for data with a large number of values, inadaptivity.

TimSort [5]: TimSort is a hybrid, sorting algorithm, derived from merge sort and insertion sort.

LibrarySort [6]: is a sorting algorithm that uses an insertion sort, but with gaps in the array to accelerate

subsequent insertions.

These are some of the commonly used sorting algorithms, and the choice of which one to use depends

on the specific requirements of the problem being solved.

Recently, researchers have proposed various hybrid sorting algorithms that aim to combine the

strengths of different sorting methods to provide a more efficient and stable sorting solution. In [7], Han

suggested a deterministic sorting algorithm with complexity O(nloglogn) time and linear space, which is the

state of the art for deterministic integer sorting. Recently, Han proposed in [8], an O(n(logn)
1/2

)) time and linear

space algorithm for sorting n real numbers, breaking the O(nlogn) time bound for sorting real numbers.

Currently, this algorithm is considered to have the lowest computational complexity. In the present paper, a new

sorting method based on clustering and using Han's algorithm as a subroutine is proposed in order to improve

slightly these bounds.

III. Proposed approach
The proposed CBSA algorithm consists first to set k, the number of clusters to an appropriate value

(depending if it sorts integers or real numbers), aiming to improve the overall computational complexity. Then,

an O(nk) clustering subroutine like those proposed in [9, 10, 11] is applied to an one dimensional input dataset

A. The second phase consists to sort the k cluster centers cj obtained in the first phase, by using Han's algorithm

as a subroutine. In the third phase, each cluster Cj is sorted by using Han's algorithm as a subroutine. Finally,

CBSA outputs, in a sorted array SA, the clusters according to the order of the index J found in the second phase.

A pseudo-code of the proposed algorithm for sorting both integers and real numbers is depicted below:

Pseudo-code of the proposed CBSAalgorithm for sorting integers:

Input: An array A of n integers.

Output: A sorted array SA of these n integers.

k round(logloglogn)

[C,c]Cluster(A,k)

[Sc, J] Han_real_sort(c)

SA[]

For i=1 to k do

j J(i)

SCjHan_integer_sort(Cj)

SASA SCj

end For

Pseudo-code of the proposed CBSAalgorithm for sorting real numbers:

Input: An array A of n real numbers.

Output: A sorted array SA of these n real numbers.

k round ((loglogn)
1/2

)

[C,c]Cluster(A,k)

[Sc, J] Han_real_sort(c)

SA[]

For i=1 to k do

j J(i)

SCjHan_real_sort(Cj)

SASA SCj

end For

CBSA: Clustering Based Sorting Algorithm

www.ijceronline.com Open Access Journal Page 211

Computational complexity:
Since the algorithms used in the clustering subroutine [9, 10, 11] and the sorting subroutine [7, 8] run in linear

space, then CBSA has a linear space complexity.

Let Ti(n) be the time complexity of phase i=1,2,3 of CBSA.

For the integer case, since the time complexity of algorithms used in the clustering subroutine [9, 10, 11] is

O(nk) then T1(n)=O(nk)=O(n(logloglogn)).

On the other hand, T2(n)=O(k(logk)
1/2

) because of the time complexity of Han's real sorting subroutine [8]. Thus

T2(n)O(n), because logloglogn(loglogloglogn)
1/2

≤n.

Let nj be the size of clusters Cj, for j=1,...,k. Since the time complexity of Han's integer sorting subroutine [7] is

O(n(loglogn)), then

k k k

T3(n)= nj(loglognj)  loglogM nj = n loglogM, since nj = n and M=max(nj)

j=1 j=1 j=1 j=1,...,k

M reaches its maximal value when all the k clusters Cj, expect one (whose size is M) are singletons.

Then, M≤n-(k-1) and

T3(n) nloglog(n+1-(logloglogn)). Therefore,T(n) the overall time complexity of CBSA in the integer case is:

T(n) =T1(n) +T2(n) +T3(n)=O(nloglog(n+1-(logloglogn))) since T1(n)  T3(n) and T2(n)  T3(n).

Thus the time complexity of CBSA is a slightly improvement over the last time complexity bound [7].

In a similar way for the real numbers case,

T1(n)=O(nk)=O(n(loglogn)
1/2

).

T2(n)=O(k(logk)
1/2

)=O((loglogn)
1/2

(log((loglogn)
1/2

))
1/2

) and T2(n)O(n),

because (loglogn)
1/2

(log((loglogn)
1/2

))
1/2
n .

On the other hand, T3(n)  nlog(n+1-(loglogn)
1/2

)
1/2

Therefore, T(n) the overall time complexity of CBSA for the real numbers case is:

T(n) =T1(n) +T2(n) +T3(n)=O(nlog(n+1-(loglogn)
1/2

)
1/2

) since T1(n) T3(n) and T2(n)  T3(n).

Thus, again the time complexity of CBSA is slightly improved over the last time complexity bound in this

case [8].

IV. Conclusion
In conclusion, the new clusteringbased sorting algorithm CBSA introduced in this paper has shown an

improvement in term of computational complexity. Its approach to data organization based on clustering makes

it a highly efficient solution for sorting vast amounts of information. Despite being a relatively new technique,

early evaluations suggest that it has the potential to outperform traditional sorting algorithms, especially in

complex data structures.

In terms of future work, there is potential to further extend and optimize CBSA. For example, the

algorithm could be modified to handle different types of data, such as sparse data sets or data with a large

number of missing values. CBSA could also be optimized for specific types of hardware, such as GPUs or

multi-core processors, to take full advantage of the computational resources available. A parallel version of this

algorithm is under consideration. Another possible improvement will consist to find a lower computational

complexity bound by considering a recursive version of this algorithm where instead of using Han's algorithm as

a subroutine, the algorithm uses CBSA in a recursive call. Finally, it will be useful to develop an efficient

implementation of this algorithm in order to conduct some experiments aiming to evaluate its performance and

speed on several different datasets. As more research is conducted and the algorithm is further refined, it is

likely to become a valuable tool for various applications.

References
[1]. Sedgewick, Robert (1 September 1998). Algorithms In C: Fundamentals, Data Structures, Sorting, Searching, Parts 1-4 (3 ed.).

Pearson Education. ISBN 978-81-317-1291-7. Retrieved 27 November 2012.

[2]. Ajtai, M.; Komlós, J.; Szemerédi, E. (1983). An O(n log n) sorting network. STOC '83. Proceedings of the fifteenth annual ACM

symposium on Theory of computing. pp. 1–9. doi:10.1145/800061.808726. ISBN 0-89791-099-0.
[3]. Goodrich, Michael T.; Tamassia, Roberto (2002). "4.5 Bucket-Sort and Radix-Sort". Algorithm Design: Foundations, Analysis, and

Internet Examples. John Wiley & Sons. pp. 241–243. ISBN 978-0-471-38365-9.

[4]. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001) [1990]. Introduction to Algorithms (2nd ed.).
MIT Press and McGraw-Hill. ISBN 0-262-03293-7.

CBSA: Clustering Based Sorting Algorithm

www.ijceronline.com Open Access Journal Page 212

[5]. Peters, Tim. "[Python-Dev] Sorting".

[6]. Bender, Michael A.; Farach-Colton, Martín; Mosteiro, Miguel A. (1 July 2004). "Insertion Sort is O(n log n)". arXiv:cs/0407003.

[7]. Yijie Han “Deterministic sorting in O(nloglogn) time and linear space” Journal of Algorithms Volume 50, Issue 1, January 2004,
Pages 96-105

[8]. Yijie Han “Sorting Real Numbers in O(n(logn)1/2)) Time and Linear Space. “ Algorithmica 82, 966–978 (2020).

https://doi.org/10.1007/s00453-019-00626-0
[9]. Kel’manov, A., Khandeev, V. (2020). Exact Linear-Time Algorithm for Parameterized K-Means Problem with Optimized Number

of Clusters in the 1D Case. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019.

Lecture Notes in Computer Science (), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_35.
[10]. J. Marshall, Lawrence C. Rafsky “Exact clustering in linear time” Published 17 February 2017 Computer Science ArXiv

1702.05425.v2

[11]. A. Jørgensen, Kasper Green Larsen, +1 author J. Nielsen “Fast Exact k-Means, k-Medians and Bregman Divergence Clustering in
1D' Published 25 January 2017 Computer Science ArXiv arXiv:1701.07204

