
ISSN (e): 2250 – 3005 || Volume, 14 || Issue, 3|| May. - June. – 2024 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 153

Algorithmic Strategies in Recommender Systems: A

Comprehensive Study of Content-Based and Collaborative

Filtering Techniques on a Custom-Curated Movie Dataset

Ajay Jaiswal1, Kunal Dutta2
1Assistant Professor,

Department of Computer Science and Engineering,

Prestige Institute of Engineering, Management & Research, Indore (MP), India.
2 Research Scholar,

Department of Computer Science and Engineering,

Prestige Institute of Engineering, Management & Research, Indore (MP), India

Date of Submission: 04-06-2024 Date of acceptance: 16-06-2024

--- ----------

I. INTRODUCTION
Recommendation systems have become integral to the digital economy, influencing user behavior and

significantly impacting the revenue streams and user engagement metrics across various sectors, including e-

commerce, entertainment, and other services. For instance, Amazon, one of the largest e-commerce platforms

globally, attributes approximately 35% of its revenue to its recommendation engine. This translates to significant

monetary gains given Amazon’s net revenue from e-commerce sales was US $470 billion in 2021. In the

entertainment sector, particularly in streaming services like Netflix and YouTube, recommendation systems play

a crucial role in driving user engagement. text superscript of the movies watched on Netflix are discovered through

the platform’s recommendation system. 80% of Netflix viewer activity is driven by personalized

recommendations from their algorithm.

Netflix’s recommendation engine saves the company $1 billion per year. Other services like Spotify,

Google News, LinkedIn, Facebook, Tinder, Google Ads, etc. use recommendation systems to increase user

retention and amplify their revenues. With the increasing volume of data and the need for personalized user

experiences, businesses across various domains will increasingly rely on sophisticated recommendation

algorithms to stay competitive and meet user expectations.

Goals of the paper

This paper aims to address several fundamental challenges in developing a robust recommendation system it also

proposes an optimized and efficient hybrid recommendation algorithm. The specific objectives are as follows:

1. Pipelining custom dataset and pre-processing it to be used by various algorithms.

2. Using Natural Language Processing (NLP) to identify relation between different movies embedding

without relying on prior user-item interaction data.

3. Using collaborative filtering algorithms like SVD, KNN and NCF to further enhance our

recommendation system.

ABSTRACT

This paper aims to provide a way to apply various filtering techniques available for

recommender systems on custom datasets which are not fit in accordance to standardized

algorithms. Specifically, this paper will focus on the use of Natural Language Processing

algorithms for content based filtering and compare them to statistical measures. It will

focus on various memory & model based techniques such as matrix factorization

methods, neighborhood-based algorithms and deep learning to model the user-item

interactions.

KEYWORDS: Exploratory Data Analysis (EDA), Content-Based Filtering, Word2Vec,

Collaborative-Based Filtering (CF), Singular Value Decomposition (SVD), k-Nearest Neighbors

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 154

4. Propose optimized hybrid recommender system and address Cold Start problem using content based

filtering.

Previous Work

There has been significant research on using TF-IDF, Doc2Vec, and other NLP techniques for content-based

filtering in recommendation systems. Nigram (2021) utilized TF-IDF for research paper analysis using NLP

techniques. Kumar et al. (2021) proposed a machine learning-based content-based recommender system for movie

recommendations using TF-IDF, among other techniques.

Doc2Vec, an extension of Word2Vec, has been effectively used for content-based movie recommendations by

transforming movie descriptions into fixed-dimension vectors, capturing semantic similarities between movies

(Liu and Wu, 2019).

K-Nearest Neighbors (KNN) is a popular collaborative filtering technique that recommends items based on user

or item similarity, effectively addressing data sparsity and cold start issues (Badugu and Manivannan, 2023).

Singular Value Decomposition (SVD) is a matrix factorization technique that decomposes the user-item

interaction matrix into latent factors, improving recommendation accuracy by uncovering hidden patterns (Quek,

2015).

Neural Collaborative Filtering (NCF) leverages deep learning to model complex, non-linear interactions between

users and items, achieving high accuracy in predicting user preferences but with higher computational costs (Jena

et al., 2022).

II. Methodology
For the data pipelining tasks, the following hardware and software were used:

• Hardware: Apple MacBook Air 2020 (SoC: Apple M1 Chip - 7 Icestorm Cores, Memory: 8GB).

• Software: Jupyter Notebook version 7.0.4.

• Libraries: Numpy, Pandas, etc.

For the machine learning tasks, the following hardware and software were used:

• Hardware: Google Colab free tier TPU and CPU.

• Libraries: Numpy, Pandas, JSON, Matplotlib, Seaborn, WordCloud, Math, AST, NLTK,

Recommenders, Scikit-learn, Surprise, Collections, TensorFlow, PyTorch, Keras.

Data Collection

The dataset for this study was obtained using The Movie Database (TMDb) API (Application

Programming Interface) Version 3. To facilitate data collection, a custom pipeline was developed using Node.js.

This pipeline was designed to interact with the TMDb API efficiently, automating the retrieval of movie data.

The primary endpoint utilized for this purpose was ‘/3/movie/popular ‘, which returns a list of movies ranked by

their popularity on the TMDb platform. Then again those movies were queried with the api endpoint

‘/3/movie/movie_id to fetch more details. Finally these movies were again queried for one last time with api

endpoint ‘/3/movie/movie_id/credits‘to finally fetch the cast(actors) and crew(directors) of any movie. All of this

information was necessary to create a thorough and comprehensive dataset.

The decision to focus on the top 10,000 most popular movies was driven by several factors.

• Relevance: Popular movies are more likely to have higher number of ratings and reviews, providing a

richer dataset analysis. This also helped in ranking the top movies directly from database into the recommendation

application.

• Computational Efficiency: Limiting dataset to 10,000 movies strikes a balance between having

sufficiently large dataset for meaningful analysis and maintaining computational efficiency. Most complex

computations were completed within 2 hours of computation time on the free tier Google Colab CPU.

• Benchmarking: Using a dataset of popular movies allows for easier comparison with other studies in

the field, many of which also utilize popular movie datasets. This also helped in getting more than 70%

intersection of common movies from the Movie Lens ‘ml-25‘dataset.

Exploratory Data Analysis (EDA)

Getting familiar with the dataset that has been have collected is important. This dataset has a total of 18 columns

for each movie as shown in Table 1.

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 155

Column Data Type

adult boolean

backdrop path url

genres list

id int

imdb id int

original language string code

overview string

popularity int

poster path url

release date date

runtime time (in mins)

tagline string

title string

vote average int

vote count int

actors List of string

director List of string

keywords List of string

Table 1: Database Schema with Data Types

For more insights on data, Figure 1 shows the most popular genres and Figure 2 show the most popular movies

in dataset.

Figure 1: Most Prominent Genres in dataset

Most Prominent Genres in dataset

The other dataset that was used was MovieLens’s Dataset for collaborative filtering. The one used in

this study was "ML-25M" Dataset. It contains 25,000,095 ratings and 1,093,360 tag applications across 62,423

movies as mentioned in "The MovieLens Datasets: History and Context" by Harper, F. Maxwell and Konstan,

Joseph A.

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 156

Figure 2: Most Popular Movies in dataset

Most Popular Movies in dataset

Figure 3 shows the ratings to movie distribution, we can observe that most users like to rate a movie 4 stars

instead.

Most of the time they’re based on personal preferences, but often they are influenced by perception of perfection,

that 5 star means perfect, even if they have no complaints, they may feel that there is still room for improvement.

More often, people might have a tendency to avoid giving extreme ratings, such as one star or five stars, and

instead opt for a more moderate rating like four stars.

Figure 3: Ratings Distribution Graph

Content-Based Filtering

This study approaches content-based filtering (CBF) predominantly from a natural language processing

(NLP) perspective, focusing on the textual analysis of movie descriptions and tags. The rationale behind this

approach is to leverage NLP techniques to extract meaningful patterns and features from text data, which are

crucial for understanding content semantics and subsequently improving recommendation accuracy. By analyzing

the textual content associated with movies, such as plot summaries and tags, the implemented CBF algorithms

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 157

can identify and recommend movies that share similar themes, genres, or narrative styles, aligning closely with

individual user preferences.

To create paragraph embedding, it is essential to know what features to include in creating tags for a given movie.

For building a "Content" Based Filter it will be better to compare contents of the movie rather than raw numbers

(like budget, profits, etc.).

Included Features:

• genres: Directly indicates the content categories.

• keywords: Provides specific themes and concepts within the content.

• overview: Offers a textual summary of the content’s plot and themes.

• director: Points to creative style and thematic preferences.

• actors: Suggests genre alignment and potentially acting style preferences.

Features like tagline is excluded because it is very abstract and is often misleading or irrelevant to actual content

and language is not included due to the skewness of dataset towards one specific language (English) as shown in

Figure 4, which could introduce bias.

Languages vs Movie Distribution

Term Frequency - Inverse Document Frequency (TF-IDF) with Cosine Similarity

TF-IDF (Term Frequency-Inverse Document Frequency) is a statistical measure employed to assess the

significance of a word within a document relative to a collection or corpus. The importance of a word increases

proportionally with its frequency in the document but is counterbalanced by its frequency across the corpus. This

technique is particularly advantageous in content-based filtering, as it aids in distinguishing movies based on the

uniqueness of their descriptions. The TF-IDF value for a term 𝑡 in a document 𝑑 from a document set 𝐷 is

computed as follows: Term Frequency or TF,

TF(𝑡, 𝑑) =
𝑓𝑡,𝑑

∑ 𝑓𝑡′,𝑑𝑡′∈𝑑

where 𝑓𝑡,𝑑 represents the number of times term 𝑡 appears in document 𝑑, and the denominator is the sum of the

occurrences of all terms appear in document 𝑑, thereby normalizing the term frequency. Inverse Document

Frequence or IDF,

IDF(𝑡, 𝐷) = log (
𝑁

|{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|
)

where 𝑁 denotes the total number of documents in the corpus 𝐷, and |{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}| is the number of

documents containing the term 𝑡 (i.e., 𝑡 is not counted if it does not appear in the document). Finally, TF-IDF

score is then calculated as,

TF-IDF(𝑡, 𝑑, 𝐷) = TF(𝑡, 𝑑) × IDF(𝑡, 𝐷)

For this dataset, we have set limit on maximum number of features or the size of vector each document is represent

as, to 5000. It effectively limits the vocabulary size to the top N (here 5000) features that have the highest term

frequencies. It helps in improving efficiency and reducing model complexity.

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 158

Figure 4: Languages vs Movie Distribution

Then we set the minimum document frequency to 5. This sets a threshold for the minimum number of documents

a term must appear in to be included in the vocabulary. It helps to remove terms that are very rare, and specific

to a small number of documents. It also helps our model to generalize well and not over fit the data.

We also set the n-gram range to (1,2). N-gram range refers to the different values of n that are considered when

analyzing a text. In this study we are using an n-gram range of 1 to 2, we are considering unigrams (single words)

and bigrams (pairs of words).

After this, we can successfully create document embedding or vectors for each movie. There are different ways

to compare the similarity between these vectors. These vectors are usually plotted in N-dimensional vector space,

here, our vector size is 5000 so the data will be represented in 5000 − 𝐷𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 space. Underlying

idea is that, the movies that have most similar meaning will have a very similar vector representation, which in

turn will mean that they are close to each other in the vector space, calculating the K nearest vectors will return

K most similar movies.

There are many ways to achieve this. Primary ways to infer similarity include Cosine Similarity, Euclidean

Distance, Manhattan Distance, KNN (K-Nearest Neighbors), Pearson Correlation Coefficient, Jaccard Similarity,

etc. For this dataset, Cosine Similarity is used, which is both fast and efficient. Subsequently the K largest

similarity scores have to be sorted.

Cosine similarity is given by,

𝑆𝐶(𝐴, 𝐵) := cos(𝜃) =
𝐀 ⋅ 𝐁

∥ 𝐀 ∥∥ 𝐁 ∥

=
∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 ⋅ √∑ 𝐵𝑖
2𝑛

𝑖=1

This formula calculates the cosine of the angle between two non-zero vectors 𝐴 and 𝐵 in a 𝑛-dimensional space,

where 𝐀 ⋅ 𝐁 is the dot product of vectors 𝐴 and 𝐵, and ∥ 𝐀 ∥ and ∥ 𝐁 ∥ are the magnitudes (or lengths) of

vectors 𝐴 and 𝐵, respectively.

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 159

Cosine Similarity for 2 Dimensional vectors

In Figure 5, it can be observed that movie B exhibits higher similarity to movie A than to movie C. This is evident

from the smaller angle 𝜃′ between A & B that a larger angle 𝜃 between B & C as 𝑐𝑜𝑠(𝜃′) < 𝑐𝑜𝑠(𝜃). When

implimenting in code, smaller cosine distance translates to larger cosine similarity.

Figure 5: Cosine Similarity for 2 Dimensional vectors

Distributed Representation Learning Models

Word2Vec (Mikolov et al., 2013a, 2013b) and Doc2Vec (Le & Mikolov, 2014) are two influential distributed

representation learning models that learn dense vector representations of words and documents, respectively,

based on the core idea that the meaning of a word or document can be inferred from its context.

2.3.2.1 Word2Vec

To understand Doc2Vec, we need to understand Word2Vec first which serves as the foundation for Doc2Vec. It

is a technique to learn word embedding, where is represented as a dense vector in high-dimensional space as

shown in Figure 6. These embedding capture both semantic and syntactic relationships between the words. A

neural network is given a dummy task to predict a word given other words in the context window.

In the Word2Vec model, each word in the vocabulary is represented by a unique vector, which corresponds to a

column in a matrix W. This matrix W serves as a lookup table, where the position of a word in the vocabulary

determines the column index of its associated vector representation.

Figure 6: CBOW architecture with three words context (” the”, ”cat”, ”sat”) which will be used to predict

the target word ”on”. The core idea is to use these word vectors as features to predict the next word in a given

sequence or context. To achieve this, the model concatenates or averages the vectors of the surrounding context

words, creating a composite vector representation of the context.

The objective of the Word2Vec model is to maximize the average log probability of correctly predicting the target

word, given its surrounding context words. This can be expressed as:

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 160

max
𝜃

1

𝑇
∑log

𝑇

𝑡=1

𝑝(𝑤𝑡|𝑤𝑡−𝑘, … , 𝑤𝑡+𝑘)

where 𝑇 is the length of the sequence, 𝑤𝑡 is the target word at position 𝑡, and 𝑤𝑡−𝑘, … , 𝑤𝑡+𝑘 are the

surrounding context words within a window of size 𝑘.

To compute the probability of the target word given the context, the Word2Vec model employs a multiclass

classifier, typically the softmax function. The soft max function takes the dot product of the context vector and

the target word vector, and normalizes it to obtain a probability distribution over the entire vocabulary.

The probability of the target word 𝑤𝑡 given the context is calculated as:

𝑝(𝑤𝑡|𝑤𝑡−𝑘, … , 𝑤𝑡+𝑘) =
𝑒𝑦𝑤𝑡

∑ 𝑒𝑦𝑖𝑖

where 𝑦𝑖 is the un-normalized log-probability for each output word 𝑖, computed as-

𝑦𝑖 = 𝑏𝑖 + 𝑈𝑖ℎ(𝑤𝑡−𝑘 , … , 𝑤𝑡+𝑘;𝑊)

In this equation, 𝑈 and 𝑏 are the softmax parameters, and ℎ is a function that constructs the context vector by

concatenating or averaging the word vectors extracted from the matrix 𝑊.

Limitation of Word2Vec for Document Comparison

While Word2Vec has proven to be effective for learning word-level embedding, it has limitations when it comes

to comparing entire documents. Word2Vec embedding only capture the semantic relationships between individual

words and do not consider the overall context and meaning of a document. Comparing documents using word-

level embedding alone may not be sufficient, as it does not take into account the document-level semantics and

the order of words in the document.

2.3.2.2 Doc2Vec

To address the limitations of Word2Vec for document comparison, Le and Mikolov (2014) introduced the

Doc2Vec model, also known as Paragraph Vector. Doc2Vec extends the Word2Vec model by adding a document-

specific vector to the input layer of the neural network. This document vector, often referred to as the "paragraph

id," is concatenated or averaged with the word vectors to predict the next word in the context.

The algorithm consists of two main architectures, the Distributed Memory Model of Paragraph Vectors (PV-DM)

and the Distributed Bag of Words version of Paragraph Vector (PV-DBOW).

In the PV-DM model as shown in Figure 7, each paragraph and word are mapped to unique vectors, represented

by columns in matrices D and W, respectively. The objective function aims to maximize the average log

probability of predicting the next word in a context, given the concatenation or average of the paragraph vector

and the surrounding word vectors. This is achieved by optimizing the following equation:

1

𝑇
∑ log

𝑇−𝑘

𝑡=𝑘

𝑝(𝑤𝑡|𝑤𝑡−𝑘, . . . , 𝑤𝑡+𝑘, 𝑑)

where 𝑤𝑡 represents the predicted word, 𝑤𝑡−𝑘, . . . , 𝑤𝑡+𝑘 are the context words, 𝑑 is the paragraph vector, 𝑇 is

the total number of words in the paragraph, and 𝑘 denotes the window size.

Figure 6, except additional paragraph token mapped to vector via matrix 𝐷

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 161

The PV-DBOW model as shown in Figure 8, on the other hand, is conceptually similar to the Skip-gram model

in Word2Vec. It learns paragraph vectors by training a neural network to predict a target word using only the

paragraph vector. The objective function for PV-DBOW is defined as:

1

𝑇
∑log

𝑇

𝑡=1

𝑝(𝑤𝑡|𝑑)

where 𝑤𝑡 is the predicted word and 𝑑 represents the paragraph vector.

Just like DBOW, paragraph vector here is being used to predict words in a given context

To obtain the paragraph vector for a new, unseen paragraph, a gradient descent optimization is performed to find

the vector 𝐷 that maximizes the log probability of the words in the paragraph, while keeping the word vectors

𝑊, softmax parameters 𝑈, and bias 𝑏 fixed. This inference step is described by the following equation:

1

𝑁
∑log

𝑁

𝑖=1

𝑝(𝑤𝑖|𝑑)

where 𝑤𝑖 are the words in the new paragraph, and 𝑁 is the total number of words in the paragraph.

The softmax function is employed to calculate the probability of a context word given the paragraph vector and

word vectors:

𝑝(𝑤𝑡|𝑤𝑡−𝑘, . . . , 𝑤𝑡+𝑘, 𝑑) =
𝑒𝑦𝑤𝑡

∑ 𝑒𝑦𝑖𝑖

where 𝑦𝑖 represents the unnormalized log-probability for each output word 𝑖, computed as:

𝑦 = 𝑏 + 𝑈ℎ(𝑤𝑡−𝑘 , . . . , 𝑤𝑡+𝑘, 𝑑)

with 𝑈 and 𝑏 being the softmax parameters and ℎ being constructed by concatenating or averaging the word and

paragraph vectors.

The training process of the Doc2Vec model involves optimizing the objective functions using stochastic gradient

descent to learn the paragraph and word vectors that best capture the semantic meaning of the input text.

After pre-processing, our dataset contains around 467 tags (or tokens) per document on average for 9755

documents and total of 4.46 million tokens. Accordingly vector size of value 300 was chosen, minimum count

for a word to be considered to be embedded was 2 and the model was trained for 150 epochs.

Collaborative-Based Filtering (CF)

In most platforms and their datasets, it is observed that the number of users far exceeds the number of

items listed on that platform. From the EDA of the Movie Lens’s ml-25m dataset, it is evident that the number of

users is substantially higher. Consequently, item-based filtering is more appropriate. This approach is more

effective because the average rating of an item tends to be more stable compared to the average rating given by a

user to different items. Additionally, item-based filtering performs better in the context of sparse matrices, which

is a common characteristic of these datasets, as not all users rate all movies and vice versa.

For this task, a special matrix is formed, where each row represents an item (in this case, a movie) and

each column represents a user. The item-user matrix, denoted as 𝑅. This matrix captures the ratings given by

users to various items. The dimensions of the matrix are 𝑚 × 𝑛 where 𝑚 is the number of items (movies) in the

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 162

dataset and 𝑛 is the number of users in the dataset.

The item-user matrix 𝑅 can be represented as:

𝑅 = [

𝑟11 𝑟12 ⋯ 𝑟1𝑛

𝑟21 𝑟22 ⋯ 𝑟2𝑛

⋮ ⋮ ⋱ ⋮
𝑟𝑚1 𝑟𝑚2 ⋯ 𝑟𝑚𝑛

]

Here, 𝑟𝑖𝑗 represents the rating given by user 𝑗 to item 𝑖. If user 𝑗 has not rated item 𝑖, then 𝑟𝑖𝑗 is typically set to

0 or left as a missing value.

There are two fundamental strategies in CF, memory based and model based. Memory-based collaborative

filtering techniques utilize the entire item-user interaction matrix to generate recommendations. They rely on the

similarity between users or items to make predictions.

2.4.1.1 Item based filtering using Cosine Similarity

In this approach, the similarity between items is calculated based on the ratings given by users. Each item is

represented as a vector in the user-rating space, where the dimensions correspond to users, and the values are the

ratings given by those users. The cosine similarity metric is then employed to measure the similarity between

item vectors.

The cosine similarity between two items 𝑖 and 𝑗 is defined as:

𝑠𝑖𝑚(𝑖, 𝑗) =
𝑖 ⋅ 𝑗

∥ 𝑖 ∥∥ 𝑗 ∥
=

∑ 𝑟𝑢,𝑖𝑢∈𝑈 𝑟𝑢,𝑗

√∑ 𝑟𝑢,𝑖
2

𝑢∈𝑈 √∑ 𝑟𝑢,𝑗
2

𝑢∈𝑈

where 𝑖 and 𝑗 are the item vectors, 𝑈 is the set of users who have rated both items 𝑖 and 𝑗, and 𝑟𝑢,𝑖 and 𝑟𝑢,𝑗 are

the ratings given by user 𝑢 to items 𝑖 and 𝑗, respectively.

Once the similarities are computed, we can get any 𝑘 items that are most similar to the target item by sorting the

similarity vector and finding the 𝑘 most highest similar items. The first item should be discarded as the most

similar item to every other item in the matrix is the target item itself which has the highest value of similarity as

the cosine angle between the identical vectors is 0 and 𝑐𝑜𝑠(0) = 1,where𝜃 = 0.

2.4.1.2 k-Nearest Neighbors (KNN)

The k-Nearest Neighbors (KNN) algorithm is another memory-based approach that finds the k most similar users

or items to make recommendations. KNN identifies the k most similar items to a target item based on a similarity

metric, such as cosine similarity, manhattan distance, euclidean distances, etc.

The predicted rating �̂�𝑢,𝑖 for user 𝑢 on item 𝑖 can be calculated as:

�̂�𝑢,𝑖 =
∑ 𝑠𝑗∈𝑁𝑖(𝑢) 𝑖𝑚(𝑖, 𝑗) ⋅ 𝑟𝑢,𝑗

∑ 𝑠𝑗∈𝑁𝑖(𝑢) 𝑖𝑚(𝑖, 𝑗)

where 𝑁𝑖(𝑢) denotes the set of k most similar items to item 𝑖 that user 𝑢 has rated, 𝑠𝑖𝑚(𝑖, 𝑗) is the similarity

between items 𝑖 and 𝑗, and 𝑟𝑢,𝑗 is the rating given by user 𝑢 to item 𝑗. KNN is a simple yet effective method for

collaborative filtering, as it considers the local neighborhood of similar items to make recommendations. In other

words, it is similar to the first approach, where it calculates the similarity (say in cosine distances) and finds the

𝑘 most nearest neighbors or as in the first approach, 𝑘 most similar items that were close. Because this is a

supervised learning algorithm, calculating and comparing accuracy metrics with other model based approaches is

quite straightforward and is the primary reason to be included in this study.

Model-based collaborative filtering techniques learn a predictive model from the user-item interaction data to

make recommendations. These methods aim to uncover latent factors or patterns in the data.

2.4.2.1 Singular Value Decomposition (SVD)

SVD is a matrix factorization technique and it decomposes the user-item interaction matrix into lower-

dimensional latent factor matrices. SVD aims to uncover latent factors that capture the underlying preferences of

users and the characteristics of item. Given a user-item interaction matrix 𝑅, SVD decomposes it into three

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 163

matrices:

𝑅 ≈ 𝑈𝛴𝑉𝑇

where 𝑈 is a matrix of user latent factors, 𝛴 is a diagonal matrix of singular values, and 𝑉 is a matrix of item

latent factors.The predicted rating �̂�𝑢,𝑖 for user 𝑢 on item 𝑖 can be calculated as:

�̂�𝑢,𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 + 𝑞𝑖
𝑇𝑝𝑢

where 𝜇 is the global mean rating, 𝑏𝑢 and 𝑏𝑖 are the user and item biases, respectively, and 𝑞𝑖 and 𝑝𝑢 are the

latent factor vectors for item 𝑖 and user 𝑢, respectively.

𝐔:This matrix contains the left singular vectors of the original matrix 𝑅. In a recommender system, the columns

of 𝑈 represent the latent features of the users. These features are abstract dimensions that capture the preferences

and behaviors of the users. The left singular vectors are orthogonal to each other, meaning they are independent

and do not overlap in the information they represent.

𝐕𝐓:This matrix contains the right singular vectors of 𝑅, and it is the transpose of matrix 𝑉. In a movie

recommender system, the rows of 𝑉𝑇 (or columns of 𝑉) represent the latent features of the movies. These features

might correspond to genres, themes, or other characteristics that define the movies. Similar to 𝑈, the right singular

vectors are also orthogonal to each other.

𝚺:This is a diagonal matrix containing the singular values of the original matrix 𝑅. The singular values are non-

negative and are typically arranged in descending order. They indicate the strength or importance of the

corresponding latent features in 𝑈 and 𝑉𝑇 . In a recommender system, larger singular values correspond to more

significant latent features that capture more of the variability in the user-movie ratings. These the singular values

in 𝛴 are the square roots of the eigenvalues of 𝑀𝑀𝑇 or 𝑀𝑇𝑀

SVD Geometry Explanation

1. First Rotation: The original matrix 𝑅 is rotated by the orthogonal matrix 𝑉 (or 𝑉𝑇 when considering

the transpose). This rotation aligns the axes of the data with the directions of maximum variance.

Figure 9: SVD Geometry Explanation

2. Scaling: The rotated matrix is then scaled along the axes by the singular values in 𝛴. This scaling

stretches or shrinks the data along each axis according to the importance of each latent feature.

3. Second Rotation: Finally, the scaled matrix is rotated by the orthogonal matrix 𝑈. This rotation brings

the data into the space where the latent user features are aligned with the axes.

Consider an example where we have a user-movie rating matrix 𝑅:

𝑅 =

[

5 3 0 1
4 0 0 1
1 1 0 5
1 0 0 4
0 1 5 4]

Using SVD, we decompose 𝑅 into 𝑈, 𝛴, and 𝑉𝑇:

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 164

𝑈 =

[

𝑢11 𝑢12

𝑢21 𝑢22

𝑢31 𝑢32

𝑢41 𝑢42

𝑢51 𝑢52]

, 𝛴 = [
𝜎1 0
0 𝜎2

]

and

𝑉𝑇 = [
𝑣11 𝑣12 𝑣13 𝑣14

𝑣21 𝑣22 𝑣23 𝑣24
]

To predict the rating of user 1 for movie 3, we compute:

�̂�13 = (𝑈1𝛴) ⋅ (𝑉3
𝑇)𝑇

SVD has been widely used in collaborative filtering due to its ability to capture latent factors and provide accurate

recommendations.

2.4.2.2 Neural Collaborative Filtering (NCF)
Neural Collaborative Filtering (NCF) is a deep learning-based approach that leverages neural networks to model

user-item interactions. NCF combines the strengths of matrix factorization and deep learning to learn complex

non-linear interactions between users and items.

While SVD is effective for capturing the global structure of the interaction data through linear decompositions, it

falls short in scenarios where the interactions have complex, non-linear patterns. NCF, by employing deep

learning, can learn these non-linarites and thus, can potentially provide more accurate recommendations.

Moreover, SVD can suffer from issues like overfitting especially with a higher number of latent factors in sparse

datasets, a limitation that NCF addresses with its capacity to generalize better through learned non-linear

mappings.

Neural collaborative filtering framework

The general architecture (Figure 10)of NCF consists of two main components:

1. Embedding layers: Users and items are represented as dense vectors in a low-dimensional latent space. The

embedding layers learn these latent representations.

2. Neural network layers: The user and item embedding are fed into a multi-layer perceptron (MLP) or other

neural network architectures to capture the complex interactions between users and items.

The predicted rating �̂�𝑢,𝑖 for user 𝑢 on item 𝑖 is obtained by:

�̂�𝑢,𝑖 = 𝑓(𝑝𝑢, 𝑞𝑖|𝛩)

where 𝑓 is the neural network function, 𝑝𝑢 and 𝑞𝑖 are the latent factor vectors for user 𝑢 and item 𝑖, respectively,

and 𝛩 represents the model parameters.

Figure 10: Neural collaborative filtering framework

The architecture of NCF comprises two main components: a Generalized Matrix Factorization (GMF) model and

a Multi-Layer Perceptron (MLP). These components are fused to form the final prediction model into NeuMF

layer.

1. GMF Component: This component generalizes the matrix factorization technique by replacing the inner

product with a neural architecture that can learn an arbitrary function from data.

𝜙𝐺𝑀𝐹(𝑢, 𝑖) = 𝑝𝑢
𝑇𝑞𝑖

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 165

 where 𝑝𝑢 and 𝑞𝑖 are the latent vectors for user 𝑢 and item 𝑖, respectively.

2. MLP Component: This component learns the interaction function from data through multiple layers of

non-linearities, enhancing the model’s ability to capture complex user-item relationships.

𝜙𝑀𝐿𝑃(𝑢, 𝑖) = 𝑎(𝐿) (𝑎(𝐿−1)(. . . 𝑎(1)(𝑝𝑢, 𝑞𝑖). . .))

 where 𝑎(𝑙) represents the activation function of the 𝑙-th layer, and (𝑝𝑢, 𝑞𝑖) are the concatenated latent

vectors of user and item.

The final layer of the NCF framework combines the outputs from the GMF and MLP components to predict the

final interaction score:

�̂�𝑢𝑖 = 𝜎(ℎ𝑇[𝜙𝐺𝑀𝐹(𝑢, 𝑖), 𝜙𝑀𝐿𝑃(𝑢, 𝑖)])

where 𝜎 is the sigmoid function ensuring the output is between 0 and 1, and ℎ is a learnable vector that combines

the two representations.

The NCF model utilizes a binary cross-entropy loss function, which is suitable for binary classification problems.

The function 𝐿 is defined as:

𝐿 = −
1

𝑁
∑ 𝑦𝑢𝑖

(𝑢,𝑖)∈𝒪∪𝒪−

log(�̂�𝑢𝑖) + (1 − 𝑦𝑢𝑖)log(1 − �̂�𝑢𝑖)

where:

N & No. of observed and sampled -ve interactions

& set of observed interactions. ^- & set of negative samples.

y_ui & binary label indicating whether user 𝑢 interacted with item 𝑖 (1 for observed interactions and 0 for

negative samples). _ui & predicted probability of interaction

NCF has shown promising results in capturing complex user-item interactions and providing personalized

recommendations.

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 166

Hybrid Recommender System

The proposed algorithm creates personalized recommendations for user based on their interests. It combines

recommendations from two different methods: Content-Based Filtering (CBF) and Collaborative Filtering (CF).

For each movie in the user’s list, it retrieves recommendations using both CBF and CF methods as list and are

These recommendations are then combined into a single list of recommended movies in the proposed

way by traversing the list 𝑅𝑎𝑐 column wise picking up movies from each row. Conversly a transpose of list 𝑅𝑎𝑐

as 𝑅𝑎𝑐
𝑇 can also be taken. Then Top 𝐾 movies can be returned accordingly. If no user data is available and |𝐿| =

0 then this is a cold start problem. To solve this, we retrieve the most popular movies from our dataset. Top movie

recommendations from different genres can also be retrieved. This is the benefit of using NLP as content based

filtering method to address cold start problem. To Optimize the current solution, the CBF and CF movies can be

cached or pre-computed and stored directly into database until there are no major changes to the dataset.

III. Results
For both collaborative(cf) and content-based(cbf) filtering methods have been used many different

techniques until now. Now to compare the respective methodologies, we will try to infer some results to see how

they actually perform. To maintain the diversity amongst the recommendations, we have trained cf and cbf on

different types of datasets but on same items.

Content-Based Filtering

Vector embedding created using TFĪDF and Doc2Vec were used to calculate the similarity between each items.

A UMAP was plotted. Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction

technique that can be used for visualization similarly to t-SNE, but also for general non-linear dimension

reduction.

Figure 11: UMAP for Cosine Similarity of TF-IDF

Figure 12: UMAP for Cosine Similarity of Doc2Vec

From Figure 11 and Figure 12 we can observe that the Doc2Vec embedding exhibit a more coherent and

meaningful clustering of documents, suggesting that similar documents are grouped more closely together. This

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 167

indicates that Doc2Vec is better at capturing the semantic relationships between documents. The TF-IDF

embedding, on the other hand, lack this level of structure and organization, implying that while they capture

semantic similarities, they do not group similar documents as effectively.

Movie title Score

The Empire Strikes Back 0.4546

Star Wars: The Force Awakens 0.3989

Return of the Jedi 0.3540

Solo: A Star Wars Story 0.2501

Barbie and the Magic of Pegasus 0.1995

Star Wars: The Last Jedi 0.1901

Star Wars: The Rise of Skywalker 0.1697

Blood Diamond 0.1690

Rebel Moon - Part Two: The Scargiver 0.1675

Star Wars: Episode I - The Phantom Menace 0.1658

Table 2: Movies Similar to Star Wars using TFIDF

Highly Relevant Titles: The movies directly related to ’Star Wars’ such as "The Empire Strikes Back", "Star

Wars: The Force Awakens", "Return of the Jedi", "Solo: A Star Wars Story", "Star Wars: The Last Jedi", "Star

Wars: The Rise of Skywalker", and "Star Wars: Episode I - The Phantom Menace" have varying degrees of

similarity scores. Notably, "The Empire Strikes Back" has the highest similarity score of 0.4546 (in table Score

column means Similarity Score).

Less Relevant Titles: "Barbie and the Magic of Pegasus", "Blood Diamond", and "Rebel Moon - Part Two: The

Scargiver" are less relevant to the ’Star Wars’ theme, indicating potential noise in the recommendations.

UMAP for Cosine Similarity of Doc2Vec

Movie title Score

The Empire Strikes Back 0.5855

Star Wars: Episode III – Revenge of the Sith 0.5041

Conquest of the Planet of the Apes 0.5026

Legend 0.4975

Star Wars: Episode I - The Phantom Menace 0.4937

Star Trek: The Motion Picture 0.4770

Zack Snyder’s Justice League 0.4734

Return of the Jedi 0.4703

Aladdin 0.4694

The 7th Voyage of Sinbad 0.4621

 Table 3: Movies Similar to Star Wars using Doc2Vec

Highly Relevant Titles: This table also includes several direct ’Star Wars’ sequels and related movies such as

"The Empire Strikes Back", "Star Wars: Episode III - Revenge of the Sith", "Star Wars: Episode I - The Phantom

Menace", and "Return of the Jedi", all scoring higher than in Table 1.

Less Relevant but Thematically Similar Titles: Titles like "Conquest of the Planet of the Apes", "Legend",

"Star Trek: The Motion Picture", and "Zack Snyder’s Justice League" suggest a broader interpretation of

similarity, focusing perhaps on sci-fi and epic adventure genres, which align well with ’Star Wars’.

Comparative Evaluation

Relevance and Precision: Table 2 generally shows higher similarity scores for movies that are directly related to

’Star Wars’ compared to Table 1. This indicates a potentially better precision in capturing the thematic essence

of ’Star Wars’.

Contextual and Genre Alignment: Table 2, while including some less directly related titles, maintains a strong

alignment with the sci-fi and adventure genres, which are central to ’Star Wars’. This suggests a broader but still

relevant recommendation scope.

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 168

Collaborative Filtering

As discussed, the results from simply applying cosine similarity and using neighbour-based solutions like KNN

yeild the same results. So only KNN will considered for memory based method and will be compared to SVD

and NCF model based solutions.

Formulas for calculating Precision@K, Recall@K, MAP, NDCG, MAE, and RMSE used in analysis.

1. Precision@K

Precision@K =
1

𝐾
∑ rel

𝐾

𝑖=1

(𝑖)

 where rel(𝑖) is an indicator function that equals 1 if the item at rank 𝑖 is relevant, and 0 otherwise.

2. Recall@K

Recall@K =
∑ rel𝐾

𝑖=1 (𝑖)

Total #of relevant items

3. Mean Average Precision (MAP)

AP@K =
∑ (Precision@k × rel(𝑘))𝐾

𝑘=1

Total #of relevant items

MAP@K =
1

𝑁
∑ AP@K

𝑗

𝑁

𝑗=1

 where 𝑁 is the number of queries.

4. Normalized Discounted Cumulative Gain (NDCG)

DCG@K = ∑
2rel(𝑖) − 1

log2(𝑖 + 1)

𝐾

𝑖=1

IDCG@K = ∑
2rel

∗(𝑖) − 1

log2(𝑖 + 1)

𝐾

𝑖=1

NDCG@K =
DCG@K

IDCG@K

 where rel
∗(𝑖) is the ideal ranking of the relevance scores.

5. Mean Absolute Error (MAE)

MAE =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 where 𝑦𝑖 is the actual value and �̂�𝑖 is the predicted value.

6. Root Mean Squared Error (RMSE)

RMSE = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

This dataset was divided into 5 Folds. A "fold" refers to a subset of the data used in cross-validation. Cross-

validation is a technique used to assess the performance of a model by dividing the data into multiple subsets

(folds) and then training and testing the model multiple times, each time using a different fold as the test set and

the remaining folds as the training set.

In 5-fold cross-validation, the dataset is divided into 5 equal parts (folds). The model is trained and tested 5 times,

each time using a different fold as the test set and the remaining 4 folds as the training set. The performance

metrics are then averaged over the 5 folds to provide a final evaluation.

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 169

Figure 13: Precision@k for KNN and SVD at different values of k

Figure 13 illustrate the performance of KNN and SVD algorithms in a recommendation system context, measured

by precision@k and recall@k metrics as the number of top recommendations (k) increases. In the first graph,

both algorithms show a decline in precision as k increases, with KNN maintaining a higher precision across all

values of k compared to SVD.

Figure 14 depicts a similar trend for recall, with KNN consistently achieving higher recall rates than SVD as k

increases. These trends suggest that KNN may be more effective at identifying a smaller, more accurate set of

recommendations, while SVD may be Figure 14: Recall @k for KNN and SVD at different values of k

befit from improvements in recall. Despite the visual data, it’s important to note that overall, SVD is reported to

outperform KNN in terms of RMSE, MAE, and average precision and recall, indicating that SVD may be more

reliable for predicting user preferences across the entire dataset.

Figure 14: Recall @k for KNN and SVD at different values of k

Note: MAP@k and NDCG@k remains constant ∀ k

The NCF model outperforms both KNN and SVD in terms of RMSE and MAE, indicating that it provides more

accurate predictions. However, when it comes to ranking metrics such as MAP, NDCG, Precision@K, and

Recall@K, KNN and SVD outperform NCF significantly.

Error Metrics

Metric KNN SVD NCF

RMSE 0.9791 0.9363 0.7301

MAE 0.7734 0.7384 0.5970

Fit Time (s) 0.32 1.16 284.9

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 170

Predict Time (s) 3.77 0.12 12.13

Ranking Metrics

Metric KNN SVD NCF

MAP 0.481637 0.465394 0.050512

NDCG 0.986214 0.987275 0.201280

Precision@K 0.691848 0.633342 0.180594

Recall@K 0.283956 0.264078 0.103128

Figure 15: Error Metrics Comparison between KNN, SVD & NCF

IV. Conclusion
Based on the analysis, Doc2Vec appears to be more effective in recommending movies that are not only

part of the ’Star Wars’ series but also include other movies within the sci-fi and epic adventure genres. This model

shows a higher degree of understanding of the content and context of ’Star Wars’, making it a better choice for

users interested in this genre. The higher similarity scores across relevant titles also suggest a more robust model

performance in capturing the nuances of ’Star Wars’-related content. This comparison was done by OpenAI’s

GPT-4o (GPT-4 Omni), GPT-4 Turbo and Anthropic’s Claude 3 Opus with access to real time internet connection

for authentic results.

In conclusion, when comparing the performance of KNN, SVD, and NCF on the MovieLens dataset

using various metrics, we observe that NCF outperforms the other two models in terms of RMSE and MAE,

indicating better accuracy in rating predictions. However, KNN and SVD exhibit superior performance in ranking

metrics such as MAP, NDCG, Precision@K, and Recall@K . This suggests that while NCF excels at minimizing

the error between predicted and actual ratings, KNN and SVD are more effective at ranking items and providing

top-K recommendations that align with user preferences.

The discrepancy in performance can be attributed to the inherent differences in the models’ ability to

capture latent features and nonlinear relationships. KNN relies on similarity between users or items, making it

effective at capturing local interactions but limited in its ability to uncover latent features. SVD, on the other

hand, identifies latent factors but assumes linear relationships between users and items, which may not always

hold true in real-world scenarios. NCF leverages deep learning to capture complex, nonlinear relationships,

enabling it to achieve better rating prediction accuracy

REFERENCES

[1]. Mikolov, Tomas. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781.
[2]. Le, Quoc V., & Mikolov, Tomas. (2014). Distributed Representations of Sentences and Documents. arXiv:1405.4053.

[3]. Chakraborty, Sarit. (2018). An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation.

arXiv:1806.06407.

[4]. He, Xiangnan, Liao, Lizi, Zhang, Hanwang, Nie, Liqiang, Hu, Xia, & Chua, Tat-Seng. (2017). Neural Collaborative Filtering.

arXiv:1708.05031.

[5]. Son, Jieun & Kim, Sb. (2017). Content-Based Filtering for Recommendation Systems Using Multiattribute Networks. Expert Systems

Algorithmic Strategies in Recommender Systems: A Comprehensive Study of Content-Based ..

www.ijceronline.com Open Access Journal Page 171

with Applications. 89. 10.1016/j.eswa.2017.08.008.

[1]. F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst.

5, 4, Article 19 (January 2016), 19 pages. https://doi.org/10.1145/2827872
[2]. Wikipedia contributors. (2024, March 17). Tf–idf. In Wikipedia, The Free Encyclopedia. Retrieved 19:01, May 7, 2024, from

https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=1214201167

[3]. Badugu, S., & Manivannan, R. (2023). K-Nearest Neighbor and Collaborative Filtering-Based Movie Recommendation System. In
Computer Networks and Inventive Communication Technologies (pp. 141-150). Springer, Singapore.

[4]. Jena, K.K., Bhoi, S.K., Mallick, C., & Sahoo, S. (2022). Neural model based collaborative filtering for movie recommendation

system. International Journal of Information Technology, 14, 2067-2077.
[5]. Lee, J.W. (2018). Content-Based Collaborative Filtering using Word Embedding: A Case Study on Movie Recommendation.

International Conference on Platform Technology and Service (PlatCon).

[6]. Liu, G., & Wu, X. (2019). Using Collaborative Filtering Algorithms Combined with Doc2Vec for Movie Recommendation. 2019
IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1461-1464.

[7]. Myriam (2022). KNN Movie Recommendation System. GitHub Repository.

[8]. Quek, A. (2015). Simple Movie Recommender Using SVD. Retrieved from https://alyssaq.github.io/2015/
[9]. Liu, G., & Wu, X. (2019). Using Collaborative Filtering Algorithms Combined with Doc2Vec for Movie Recommendation. 2019

IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1461-1464.

[10]. Wikipedia contributors. (2024, May 2). Singular value decomposition. In Wikipedia, The Free Encyclopedia. Retrieved 12:37, May

17, 2024, from https://en.wikipedia.org/w/index.php?title=Singular_value_decomposition&oldid=1221850898

[11]. Abhishek Sharma. (2019, Dec 16). Neural Collaborative Filtering. From https://towardsdatascience.com/neural-collaborative-

filtering-96cef1009401
[12]. Prince Grover (2017, Dec 29). Various Implementations of Collaborative Filtering. From https://towardsdatascience.com/various-

implementations-of-collaborative-filtering-100385c6dfe0

[13]. Nigram, Nishant. (2021). Research Paper Analysis using Natural Language Processing. Technical University of Munich. Retrieved
from https://www.cs.cit.tum.de/en/sccs/news/sccs-colloquium/article/nishant-nigam-research-paper-analysis-using-nlp-techniques/.

[14]. Kumar, Rajesh, Verma, Bhupendra K., & Rastogi, S. S. (2021). Social Popularity based SVD++ Recommender System. International

Journal of Computer Applications, 87, 33–37. doi:10.5120/ijca2015906432.

https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=1214201167
https://alyssaq.github.io/2015/
https://en.wikipedia.org/w/index.php?title=Singular_value_decomposition&oldid=1221850898
https://towardsdatascience.com/neural-collaborative-filtering-96cef1009401
https://towardsdatascience.com/neural-collaborative-filtering-96cef1009401
https://towardsdatascience.com/various-implementations-of-collaborative-filtering-100385c6dfe0
https://towardsdatascience.com/various-implementations-of-collaborative-filtering-100385c6dfe0
https://www.cs.cit.tum.de/en/sccs/news/sccs-colloquium/article/nishant-nigam-research-paper-analysis-using-nlp-techniques/

