

On Pre Generalized Regular α-Continuous and Irresolute Mappings in Intuitionistic Fuzzy Topological Space

K. Ramesh¹ and C.Sushama²

^{1&2}Department of Mathematics Nehru Institute of Engineering and Technology Coimbator-641105, Tamilnadu, India Corresponding Author:K. Ramesh

ABSTRACT

In this paper, we introduce and study the notions of intuitionistic fuzzy pre generalized regular α continuous mappings and intuitionistic fuzzy pre generalized regular α -irresolute mappings and study some of its properties in intuitionistic fuzzy topological spaces.

KEYWORDS: Intuitionistic fuzzy topology, Intuitionistic fuzzy point, Intuitionistic fuzzy pre generalized regular α -losed sets, Intuitionistic fuzzy pre generalized regular α -continuous mappings and Intuitionistic fuzzy pre generalized regular α -irresolute mappings.

2010 Mathematics Subject Classification: 54A40, 03F55. AMS Subject Classification: 05C12.

Date of Submission: 20-05-2024

Date of acceptance: 03-06-2024

I. INTRODUCTION

The concept of fuzzy set[FS] was introduced by Zadeh [14] and later fuzzy topology was introduced by Chang [2] in 1967. By adding the degree of non membership to FS, Atanassov [1] proposed intuitionistic fuzzy set[IFS] using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper we introduced intuitionistic fuzzy pre generalized regular α -continuous mappings and intuitionistic fuzzy pre generalized regular α -irresolute mappings and studied some of their basic properties.

II. PRELIMINARIES

Throughout this paper, (X, τ) , (Y, σ) and (Z, γ) (or simply X, Y and Z) denotes the intuitionistic fuzzy topological spaces (briefly IFTS). For a subset A of X, the closure, the interior and the complement of A are denoted by cl(A), int(A) and A^c respectively. We recall some basic definitions that are used in the sequel.

Definition 2.1: [1] Let X be a nonempty set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } where the functions $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership(namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2: [1] Let A and B be IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle | x \in X\}$. Then

- (i) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,
- (ii) A = B if and only if $A \subseteq B$ and $B \subseteq A$,
- (iii) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \},\$
- (iv) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle / x \in X \},$
- (v) $A \cup B = \{ \langle x, \mu_A(x) \vee \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X \}.$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$. Also for the sake of simplicity, we shall use the notation $A = \langle x, (\mu_A, \mu_B), (\nu_A, \nu_B) \rangle$ instead of $A = \langle x, (A/\mu_A, \mu_B), (\nu_A, \nu_B) \rangle$ B/μ_B), $(A/v_A, B/v_B)$). The intuitionistic fuzzy sets $0_{\sim} = \{\langle x, 0, 1 \rangle / x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle / x \in X\}$ are respectively the empty set and the whole set of X.

Definition 2.3:[3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$,
- $(iii) \quad \cup G_i \in \tau \text{ for any family } \{G_i \, / \, i \in J\} \subseteq \tau.$

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space(IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set(IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [3] Let (X, τ) be an IFTS and A = $\langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then

- (i) $int(A) = \bigcup \{ G / G \text{ is an IFOS in } X \text{ and } G \subseteq A \},\$
- (ii) $cl(A) = \bigcap \{ K / K \text{ is an IFCS in } X \text{ and } A \subseteq K \},$
- (iii) $cl(A^c) = (int(A))^c$,
- (iv) $int(A^c) = (cl(A))^c$.

Definition 2.5: [4] An IFS A of an IFTS (X, τ) is an

(i) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)),

- (ii) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),
- (iii) intuitionistic fuzzy semiclosed set (IFSCS in short) if $int(cl(A)) \subseteq A$,
- (iv) intuitionistic fuzzy semiopen set (IFSOS in short) if $A \subseteq cl(int(A))$,
- (v) intuitionistic fuzzy preclosed set (IFPCS in short) if $cl(int(A)) \subseteq A$,
- (vi) intuitionistic fuzzy preopen set (IFPOS in short) if $A \subseteq int(cl(A))$,
- (vii) intuitionistic fuzzy α -closed set (IF α CS) if cl(int(cl(A))) \subseteq A,
- (viii) intuitionistic fuzzy α -open set (IF α OS in short) if A \subseteq int(cl(int(A)))

Definition 2.6: [4] Let $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then

- (i) $pint(A) = \bigcup \{G : G \text{ is an IF P OS in } X \text{ and } G \subseteq A \},\$
- (ii) $pcl(A) = \bigcap \{K : K \text{ is an IF } P \text{ CS in } X \text{ and } A \subseteq K \}.$

Definition 2.7: [12] An IFS A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } in an IFTS (X, τ) is called an intuitionistic fuzzy regular α - open set (IFR α OSfor short) if there exist an IFROS U such that U $\subseteq A \subseteq \alpha cl(U)$.

Definition 2.8: An IFS A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } in an IFTS (X, τ) is called an

- (i) intuitionistic fuzzy weakly closed set (IFWCSfor short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSOS[11]
- (ii) intuitionistic fuzzy generalized pre regular closed set (IFGPRCS for short) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFROS[13]

An IFS A is said to be an intuitionistic fuzzy weakly open set (IFWOSfor short) and intuitionistic fuzzy generalized pre regular open set (IFGPROSfor short) if the complement of A is an IFWCS and IFGPRCS respectively.

Definition 2.9: [12] An IFS A= { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } in an IFTS (X, τ) is said to be an intuitionistic fuzzy regular generalized α -closed set (IFRG α CSfor short) if α cl(A) \subseteq U whenever A \subseteq U, U is IFR α OS in X.

An IFS A is said to be an intuitionistic fuzzy regular generalized α -open set (IFRG α OS for short) in (X, τ) if the complement of A is an IFRG α CS in X.

Every IFWCS is an IFRGaCS in X.

Definition 2.10: [8] An IFS A= { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } in an IFTS (X, τ) is said to be an intuitionistic fuzzy regular weakly generalized closed set (IFRWGCSfor short) if cl(int(A)) \subseteq U whenever A \subseteq U, U is IFROS in X.

An IFS A is said to be an intuitionistic fuzzy regular weakly generalized open set (IFRWGOS for short) in (X, τ) if the complement of A is an IFRWGCS in X.

Definition 2.11: [7] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy pre generalized regular α -closed set (IFPGR α CS for short) if pcl(A) \subseteq U whenever A \subseteq U and U is an IFR α OS in (X, τ).

The family of all IFPGRaCSs of an IFTS (X, τ) is denoted by IFPGRaC(X). Every IFCS, IFRCS, IFaCS, IFPCS, IFWCS, IFRGaCS are an IFPGRaCS and every IFPGRaCS is an IFRWGCS and IFGPRCS but the converses are not true in general.

Definition 2.12: [7] The complement A^c of an IFPGRaCS A in an IFTS (X, τ) is called an intuitionistic fuzzy pre generalized regular α -open set (IFPGRaOS for short) in X.

Every IFOS, IFROS, IF α OS, IFPOS, IFWOS, IFRG α OS are an IFPGR α OS and every IFPGR α OS is an IFRWGOS and IFGPROS but the converses are not true in general.

Definition 2.13: [10] Let α , $\beta \in [0, 1]$ and $\alpha + \beta \le 1$. An intuitionistic fuzzy point (IFP for short) $p_{(\alpha, \beta)}$ of X is an IFS of X defined by

 $p_{(\alpha, \beta)}(y) = \begin{cases} (\alpha, \beta) & \text{ if } y = p \\ (0, 1) & \text{ if } y \neq p \end{cases}$

Definition 2.14: [7] An IFTS (X, τ) is called an intuitionistic fuzzy pre generalized regular α -T_{1/2} space (IFPGR α -T_{1/2} space for short) if every IFPGR α CS is an IFPCS.

Definition 2.15: [7] An IFTS (X, τ) is called an intuitionistic fuzzy pre generalized regular -T_{1/2} space (IFPGR-T_{1/2} space for short) if every IFPGR α CS is an IFCS.

Definition 2.16: [4] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be intuitionistic fuzzy continuous (IF continuous in short) if $f^{-1}(B) \in IFO(X)$ for every $B \in \sigma$.

Definition 2.17: [5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be

(i) intuitionistic fuzzy α - continuous(IF α continuous in short) if $f^{-1}(B) \in IF\alpha O(X)$ for every $B \in \sigma$,

(ii) intuitionistic fuzzy pre continuous (IFP continuous in short) if $f^{-1}(B) \in IFPO(X)$ for every $B \in \sigma$.

Definition 2.18: [11] A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy weakly continuous (IFW continuous for short) mappings if f⁻¹(V) is an IFWCS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.19: [6] A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy regular generalized α continuous (IFRG α continuous for short) mapping if f⁻¹(V) is an IFRG α CS in (X, τ) for every IFCS V of (Y, σ) . Every IFW continuous mapping is an IFRG α continuous mapping but not conversely.

Definition 2.20: [13] A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy generalized pre regular continuous (IFGPR continuous for short) mappings if f⁻¹(V) is an IFGPRCS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.21:[9] A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy regular weakly generalized continuous (IFRWG continuous for short) mapping if f⁻¹(V) is an IFRWGCS in (X, τ) for every IFCS V of (Y, σ) .

Result 2.22: [7] For any IFS A in (X, τ) where X is an IFPGR $\alpha T_{1/2}$ space, A \in IFPGR $\alpha O(X)$ if and only if for every IFP $p_{(\alpha, \beta)} \in A$, there exists an IFPGR αOS B in X such that $p_{(\alpha, \beta)} \in B \subseteq A$.

III. INTUITIONISTIC FUZZY PRE GENERALIZED REGULAR α-CONTINUOUS MAPPINGS

Definition 3.1: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzypre generalized regular α -continuous (IFPGR α continuous for short) mappings if f⁻¹(V) is an IFPGR α CS in (X, τ) for every IFCS V of (Y, σ) .

For the sake of simplicity, we shall use the notation A= $\langle x, (\mu, \mu), (\nu, \nu) \rangle$ instead of A= $\langle x, (a/\mu_a, b/\mu_b), (a/\nu_a, b/\nu_b) \rangle$ in all the examples used in this paper. Similarly we shall use the notation B = $\langle x, (\mu, \mu), (\nu, \nu) \rangle$ instead of B = $\langle x, (u/\mu_u, \nu/\mu_v), (u/\nu_u, \nu/\nu_v) \rangle$ in the following examples.

Example 3.2: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.3, 0.3), (0.7, 0.7) \rangle$, $G_2 = \langle y, (0.8, 0.7), (0.2, 0.2) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFPGR α continuous mapping.

Theorem 3.3: Every IF continuous mapping is an IFPGRαcontinuous mapping but not conversely.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF continuous mapping. Let V be an IFCS in Y. Then f⁻¹(V) is an IFCS in X. Since every IFCS is an IFPGRaCS, f⁻¹(V) is an IFPGRaCS in X. Hence f is an IFPGRa continuous mapping.

Example 3.4: In Example 3.2, f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFPGRαcontinuous mapping but not an IF continuous mapping. Since $G_2 = \langle y, (0.8, 0.7), (0.2, 0.2) \rangle$ is an IFOS in Y but f⁻¹(G₂) = $\langle x, (0.8, 0.7), (0.2, 0.2) \rangle$ is not an IFOS in X.

Theorem 3.5: Every IFα continuous mapping is an IFPGRα continuous mapping but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF α continuous mapping. Let V be an IFCS in Y. Then $f^{-1}(V)$ is an IF α CS in X. Since every IF α CS is an IFPGR α CS, $f^{-1}(V)$ is an IFPGR α CS in X. Hence f is an IFPGR α continuous mapping.

Example 3.6: In Example 3.2, f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFPGR α continuous mapping but not an IF α continuous mapping. Since $G_2 = \langle y, (0.8, 0.7), (0.2, 0.2) \rangle$ is an IFOS in Y but f⁻¹(G₂) = $\langle x, (0.8, 0.7), (0.2, 0.2) \rangle$ is not an IF α OS in X.

Theorem 3.7: Every IFP continuous mapping is an IFPGRαcontinuous mapping but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IFP continuous mapping. Let V be an IFCS in Y. Then $f^{-1}(V)$ is an IFPCS in X. Since every IFPCS is an IFPGRaCS, $f^{-1}(V)$ is an IFPGRaCS in X. Hence f is an IFPGRa continuous mapping.

Example 3.8: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.7, 0.9), (0.3, 0.1) \rangle$, $G_2 = \langle y, (0.3, 0.1), (0.7, 0.9) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFPGR α continuous mapping but not an IFP continuous mapping.

Theorem 3.9: Every IFRGα continuous mapping is an IFPGRα continuous mapping but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IFRG α continuous mapping. Let V be an IFCS in Y. Then $f^{-1}(V)$ is an IFRG α CS in X. Since every IFRG α CS is an IFPGR α CS, $f^{-1}(V)$ is an IFPGR α CS in X. Hence f is an IFPGR α continuous mapping.

Example 3.10: In Example 3.2, f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFPGR α continuous mapping but not an IFRG α continuous mapping. Since $G_2 = \langle y, (0.8, 0.7), (0.2, 0.2) \rangle$ is an IFOS in Y but f⁻¹(G₂) = $\langle x, (0.8, 0.7), (0.2, 0.2) \rangle$ is not an IFRG α OS in X.

Theorem 3.11: Every IFW continuous mapping is an IFPGRα continuous mapping but not conversely.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFW continuous mapping. Since every IFW continuous mapping is an IFRG α continuous mapping. By Theorem 3.9., f is an IFPGR α continuous mapping.

Example 3.12: In Example 3.2, f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFPGR α continuous mapping but not an IFW continuous mapping. Since $G_2 = \langle y, (0.8, 0.7), (0.2, 0.2) \rangle$ is an IFOS in Y but f⁻¹(G₂) = $\langle x, (0.8, 0.7), (0.2, 0.2) \rangle$ is not an IFWOS in X.

Theorem 3.13: Every IFPGRα continuous mapping is an IFGPR continuous mapping but not conversely.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α continuous mapping. Let V be an IFCS in Y. Thenf⁻¹(V) is an IFPGR α CS in X. Since every IFPGR α CS is an IFGPRCS, f⁻¹(V) is an IFGPRCS in X. Hence f is an IFGPR continuous mapping.

Example 3.14:Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.2, 0.3), (0.5, 0.6) \rangle$, $G_2 = \langle y, (0.5, 0.4), (0.4, 0.4) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFGPR continuous mapping but not an IFPGR α continuous mapping.

Theorem 3.15: Every IFPGRα continuous mapping is an IFRWG continuous mapping but not conversely.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α continuous mapping. Let V be an IFCS in Y. Then f⁻¹(V) is an IFPGR α CS in X. Since every IFPGR α CS is an IFRWGCS, f⁻¹(V) is an IFRWGCS in X. Hence f is an IFRWG continuous mapping.

Example 3.16: In Example 3.14, f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFRWG continuous mapping but not an IFPGR α continuous mapping.

Theorem 3.17: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping where $f^{-1}(V)$ is an IFRCS in X for every IFCS in Y. Then f is an IFPGR α continuous mapping but not conversely.

Proof: Let A be an IFCS in Y. Then $f^{-1}(V)$ is an IFRCS in X. Since every IFRCS is an IFPGR α CS, $f^{-1}(V)$ is an IFPGR α CS in X. Hence f is an IFPGR α continuous mapping.

Example 3.18: In Example 3.2, f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFPGR α continuous mapping but not a mapping defined in Theorem 3.17. The relation between various types of intuitionistic fuzzy continuity is given in the following diagram. In this diagram 'cts' means continuous.

Theorem 3.19: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFPGR α continuous mapping, then for each IFP $p_{(\alpha, \beta)}$ of X and each A $\in \sigma$ such that $f(p_{(\alpha, \beta)}) \in A$ there exists an IFPGR α OS B of X such that $p_{(\alpha, \beta)} \in B$ and $f(B) \subseteq A$.

Proof: Let $p_{(\alpha, \beta)}$ be an IFP of X and $A \in \sigma$ such that $f(p_{(\alpha, \beta)}) \in A$. Put $B = f^{-1}(A)$. Then by hypothesis B is an IFPGR α OS in X such that $p_{(\alpha, \beta)} \in B$ and $f(B) = f(f^{-1}(A)) \subseteq A$.

Theorem 3.20: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α continuous mapping. Then f is an IFP continuous mapping if X is an IFPGR $\alpha T_{1/2}$ space.

Proof: Let V be an IFCS in Y. Then $f^{-1}(V)$ is an IFPGRaCS in X, by hypothesis. Since X is an IFPGRaT_{1/2} space, $f^{-1}(V)$ is an IFPCS in X. Hence f is an IFP continuous mapping.

Theorem 3.21: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α continuous mapping and g: $(Y, \sigma) \rightarrow (Z, \gamma)$ bean IF continuous mapping, then $g \circ f: (X, \tau) \rightarrow (Z, \gamma)$ is an IFPGR α continuous mapping.

Proof: Let V be an IFCS in Z. Then $g^{-1}(V)$ is an IFCS in Y, by hypothesis. Since f is an IFPGR α continuous mapping, $f^{-1}(g^{-1}(V))$ is an IFPGR α CS in X. Hence $g \circ f$ is an IFPGR α continuous mapping.

Theorem 3.22: Let (Y, σ) be an IFPGRT_{1/2} space, f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \gamma)$ be two IFPGR α continuous mapping, then $g \circ f: (X, \tau) \rightarrow (Z, \gamma)$ is an IFPGR α continuous mapping.

Proof: Let V be an IFCS in Z. Then $g^{-1}(V)$ is an IFPGR α CS in Y. By hypothesis (Y, σ) is an IFPGRT_{1/2} space implies that $g^{-1}(V)$ is an IFCS in Y. Since f is an IFPGR α continuous mapping, $f^{-1}(g^{-1}(V))$ is an IFPGR α CS in X. Hence $g \circ f$ is an IFPGR α continuous mapping.

Theorem 3.23: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X and Y are IFPGR $\alpha T_{1/2}$ space:

- (i) f is an IFPGR α continuous mapping,
- (ii) $f^{-1}(B)$ is an IFPGR α OS in X for each IFOS B in Y,
- (iii) for every IFP $p_{(\alpha, \beta)}$ in X and for every IFOS B in Y such that $f(p_{(\alpha, \beta)}) \in B$, there exists an IFPGR α OS A in X such that $p_{(\alpha, \beta)} \in A$ and $f(A) \subseteq B$.
- **Proof:** (i) \Leftrightarrow (ii) is obvious, since $f^{-1}(B^c) = (f^{-1}(B))^c$.

(ii) \Rightarrow (iii) Let B be any IFOS in Y and let $p_{(\alpha, \beta)} \in X$. Given $f(p_{(\alpha, \beta)}) \in B$. By hypothesis $f^{-1}(B)$ is an IFPGR α OS in X. Take A= $f^{-1}(B)$. Now $p_{(\alpha, \beta)} \in f^{-1}(f(p_{(\alpha, \beta)})$. Therefore $f^{-1}(f(p_{(\alpha, \beta)}) \in f^{-1}(B) = A$. This implies $p_{(\alpha, \beta)} \in A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

(iii) \Rightarrow (i) Let A be an IFCS in Y. Then its complement, say $B = A^c$, is an IFOS in Y. Let $p_{(\alpha, \beta)} \in C$ and $f(C) \subseteq B$. Now $C \subseteq f^{-1}(f(C)) \subseteq f^{-1}(B)$. Thus $p_{(\alpha, \beta)} \in f^{-1}(B)$. Therefore $f^{-1}(B)$ is an IFPGRaOS in X by Result 2.24. That is $f^{-1}(A^c)$ is an IFPGRaOS in X and hence $f^{-1}(A)$ is an IFPGRaCS in X. Thus f is an IFPGRa continuous mapping.

Theorem 3.24: Let $f: (X, \tau) \to (Y, \sigma)$ be an IFPGR α continuous mapping if $cl(int(cl(f^{-1}(A)))) \subseteq f^{-1}(cl(A))$ for every IFS A in Y.

Proof: Let A be an IFOS in Y. Then A^c is an IFCS in Y. By hypothesis, $cl(int(cl(f^{-1}(A^c)))) \subseteq f^{-1}(cl(A^c)) = f^{-1}(A^c)$, since A^c is an IFCS. Now $(int(cl(int(f^{-1}(A)))))^c = cl(int(cl(f^{-1}(A^c)))) \subseteq f^{-1}(A^c) = (f^{-1}(A))^c$. This implies $f^{-1}(A) \subseteq int(cl(int(f^{-1}(A))))$. Hence $f^{-1}(A)$ is an IF α OS in X and hence it is an IFPGR α OS in X. Therefore f is an IFPGR α continuous mapping, by Theorem 3.23.

IV. INTUITIONISTIC FUZZY PRE GENERALIZED REGULAR α-IRRESOLUTE MAPPINGS

Definition 4.1: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ be an intuitionistic fuzzypre generalized regular α -irresolute (IFPGR α irresolute) mapping if f⁻¹(V) is an IFPGR α CS in(X, τ) for every IFPGR α CS V of(Y, σ).

Example 3.2: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$, $G_2 = \langle y, (0.2, 0.3), (0.8, 0.7) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFPGR α irresolute mapping.

Theorem 4.2: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α irresolute mapping, then f is an IFPGR α continuous mapping but not conversely.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α irresolute mapping and V be any IFCS in Y. Then V is an IFPGR α CS in Y and by hypothesis, f⁻¹(V) is an IFPGR α CS in X. Hence f is an IFPGR α continuous mapping. The converse need not be true which can be seen from the following example.

Example 4.3: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$, $G_2 = \langle y, (0.8, 0.7), (0.2, 0.2) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFPGR α continuous mapping but not an IFPGR α irresolute mapping.

Theorem 4.4: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \gamma)$ be IFPGR α irresolute mapping. Theng \circ f: $(X, \tau) \rightarrow (Z, \gamma)$ is an IFPGR α irresolute mapping.

Proof: Let V be an IFPGR α CS in Z. Then g⁻¹(V) is an IFPGR α CS in Y. Since f is an IFPGR α irresolute, f⁻¹(g⁻¹(V)) is an IFPGR α CS in X. Hence g \circ f is an IFPGR α irresolute mapping.

Theorem 4.5: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α irresolute mapping and g: $(Y, \sigma) \rightarrow (Z, \gamma)$ be IFPGR α continuous mapping, the g \circ f: $(X, \tau) \rightarrow (Z, \gamma)$ is an IFPGR α continuous mapping.

Proof: Let V be an IFCS in Z. Then $g^{-1}(V)$ is an IFPGR α CS in Y. Since f is an IFPGR α irresolute mapping, $f^{-1}(g^{-1}(V))$ is an IFPGR α CS in X. Hence $g \circ f$ is an IFPGR α continuous mapping.

Theorem 4.6: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X and Y are IFPGR $\alpha T_{1/2}$ space:

- (i) f is an IFPGR α irresolute mapping,
- (ii) $f^{-1}(B)$ is an IFPGRaOS in X for each IFPGRaOS B in Y,
- (iii) $f^{-1}(pint(B)) \subseteq pint(f^{-1}(B))$ for each IFS B of Y,
- (iv) $pcl(f^{-1}(B)) \subseteq f^{-1}(pcl(B))$ for each IFS B of Y.

Proof: (i) \Leftrightarrow (ii) is obvious, since $f^{-1}(A^c) = (f^{-1}(A))^c$.

(ii) \Rightarrow (iii) Let B be any IFS in Y and pint(B) \subseteq B. Also f⁻¹(pint(B)) \subseteq f⁻¹(B). Since pint(B) is an IFPOS in Y, it is an IFPGR α OS in Y. Therefore f⁻¹(pint(B)) is an IFPGR α OS in X, by hypothesis. Since X is an IFPGR α T_{1/2} space, f⁻¹(pint(B)) is an IFPOS in X. Hence f⁻¹(pint(B)) = pint(f⁻¹(pint(B))) \subseteq pint(f⁻¹(B)).

(iii) \Rightarrow (iv) is obvious by taking complement in (iii).

(iv) \Rightarrow (i) Let B be an IFPGR α CS in Y. Since Y is an IFPGR α T_{1/2} space, B is an IFPCS in Y and pcl(B) = B. Hence f⁻¹(B) = f⁻¹(pcl(B)) \supseteq pcl(f⁻¹(B)), by hypothesis. Butf⁻¹(B) \subseteq pcl(f⁻¹(B)). Therefore pcl(f⁻¹(B)) = f⁻¹(B). This implies f⁻¹(B) is an IFPCS and hence it is an IFPGR α CS in X. Thus f is an IFPGR α irresolute mapping.

Theorem 4.7: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α irresolute mapping from an IFTS X into an IFTS Y. Thenf⁻¹(B) \subseteq pint(f⁻¹(int(cl(B)))) for every IFPGR α OS B in Y, if X and Y are IFPGR α T_{1/2} spaces.

Proof: Let B be an IFPGRaOS in Y. Then by hypothesisf $^{-1}(B)$ is an IFPGRaOS in X. Since X is an IFPGRaT_{1/2} space, $f^{-1}(B)$ is an IFPOS in X. Therefore pint($f^{-1}(B)$) = $f^{-1}(B)$. Since Y is an IFPGRaT_{1/2} space, B is an IFPOS in Y and B \subseteq int(cl(B)). Now $f^{-1}(B) = pint(f^{-1}(B)) \subseteq pint(f^{-1}(int(cl(B))))$ implies, $f^{-1}(B) \subseteq pint(f^{-1}(int(cl(B))))$.

Theorem 4.8: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFPGR α irresolute mapping from an IFTS X into an IFTS Y. Then f⁻¹(B) \subseteq pint(int(cl(f⁻¹(B)))) for every IFPGR α OS B in Y, if X and Y are IFPGR α T_{1/2} spaces.

Proof: Let B be an IFPGRaOS in Y. Then by hypothesisf ${}^{-1}(B)$ is an IFPGRaOS in X. Since X is an IFPGRaT_{1/2} space, $f {}^{-1}(B)$ is an IFPOS in X. Therefore pint($f {}^{-1}(B)$) = $f {}^{-1}(B) \subseteq int(cl(f {}^{-1}(B)))$. Hence $f {}^{-1}(B) \subseteq pint(int(cl(f {}^{-1}(B))))$.

Theorem 4.9: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if Y is an IFPGR $\alpha T_{1/2}$ space:

- (i) f is an IFPGR α irresolute mapping.
- (ii) f is an IFPGR α continuous mapping.

Proof: (i) \Rightarrow (ii) Let V be an IFCS in (Y, σ). Since every IFCS is an IFPGR α CS and f is an IFPGR α irresolute, f⁻¹(V) is an IFPGR α CS in (X, τ). Thus f isIFPGR α continuous.

(ii) \Rightarrow (i) Let F be an IFPGRaCS in (Y, σ). Since Y is an IFPGRaT_{1/2} space, F is an IFCS in Y. By hypothesis f⁻¹(F) is an IFPGRaCS in X. Therefore f is an IFPGRa irresolute.

REFERENCES

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1986) 87-96.
- [2] C. L. Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24, (1968) 182-190.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems, 88, (1997) 81-89.
- [4] H. Gurcay, Es. A. Haydar and D. Coker, on fuzzy continuity in intuitionistic fuzzy topological spaces, J.Fuzzy Math.5 (2), (1997) 365-378.
- [5] JoungKonJeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19, (2005) 3091-3101,.
- [6] JyotiPandeyBajpai and S. S. Thakur, Intuitionistic fuzzy rga continuity, Int. J. Contemp. Math. Sciences, 6 (2011), 2335-2351.
- [7] S. Kavunthiand K. Ramesh, On Pre Generalized Regular α-Closed Sets in Intuitionistic Fuzzy Topological Spaces, (Submitted).
- [8] P. Rajarajeswari and L. Senthil Kumar, Regular Weakly Generalized Closed Sets in Intuitionistic Fuzzy Topological Spaces, International Journal of Computer Applications Vol.43, No 18., (2012), 13-17.
- P. Rajarajeswari and L. Senthil Kumar, Regular weakly generalized continuous mappings in intuitionistic fuzzy topological spaces, International Journal of Mathematical Archive, 3(5) (2012) 1957-1962.
- [10] Seok Jong Lee and EunPyo Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 37, No. 1, (2000) 63-76.
- [11] S. S. Thakur, BajpaiPandeyJyoti, Intuitionistic Fuzzy w-closed sets and intuitionistic fuzzy w-continuity, International Journal of Contemporary Advanced Mathematics, Vol. 1(1), (2010) 1–1.
- [12] S. S. Thakur and BajpaiPandeyJyoti, Intuitionistic Fuzzy rgα-closed sets, International Journal of Fuzzy system and Rough System 4(1), (2011) 67-73.
- [13] S. S. Thakur and JyotiPandeyBajpai, On intuitionistic fuzzy Gpr-closed sets, Fuzzy Inf. Eng, 4 (2012) 425-444.
- [14] L. A. Zadeh, Fuzzy sets, Information and control, 8(1965) 338-353.