
ISSN (e): 2250 – 3005 || Volume, 13 || Issue, 6|| Nov.-Dec. – 2023 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 62

Extending High Availability with Distributed Always on

Using Patterns for Global SQL Server Continuity

Padma Rama Divya Achanta
Illinois, United States of America.

Email id: prd.achanta@gmail.com

I. INTRODUCTION
In the era of real-time data processing and global operations, ensuring the high availability (HA) of

mission-critical databases is a cornerstone of IT infrastructure strategy.[1] SQL Server, a widely adopted

relational database management system, is the backbone of numerous enterprise applications. With the

increasing demand for uninterrupted services and global data access, traditional high availability

configurations—often restricted to a single region or data center—have proven inadequate.[2] As a result,

businesses are adopting distributed "Always On" architectures that provide worldwide continuity, using hybrid

clouds, regionally dispersed replicas, and smart failovers.[3]

"Always On" Availability Groups, which was added in SQL Server 2012, has matured to accommodate

multi-region deployment patterns, thereby providing a foundation for globally dispersed systems.[4] By

providing synchronization among geographically dispersed replicas, these architectures not only improve

availability but also provide read-scale out, disaster recovery (DR) capabilities, and load balancing. Designing,

deploying,[6] and maintaining these distributed systems, however, necessitates a thoughtful strategy that

involves defined patterns, automation, and monitoring.[7] Such patterns can include hub-and-spoke topologies,

quorum models, and geo-distributed listener setups. [8] Terraform, an open-source Infrastructure as Code (IaC)

tool developed by HashiCorp, is the key enabler of automation to deploy such sophisticated environments.[9]

When used in conjunction with ARM templates and Azure Resource Manager, Terraform enables infrastructure

engineers to reproduce patterns for HA configurations across geographic regions with less human error, version

ABSTRACT
In today's globally dispersed business environments, it is critical to provide continuous access to

mission-critical applications and data. When organizations expand their operations across the

world and across continents, conventional high availability (HA) solutions are insufficient in

addressing the sophisticated needs of continuous service provision. This paper discusses the

strategic use of high availability by extending it through Distributed Always on Availability Groups

in Microsoft SQL Server with an emphasis on architectural patterns that promote global continuity

and resilience. The research explores how Always On technology—by means of synchronous and

asynchronous replication, automatic failover, and hybrid cloud support—facilitates enterprise-

level continuity in multi-region SQL deployments. It emphasizes the benefits of embracing

distributed availability groups (DAGs) for cross-data-center and cross-cloud use cases, enabling

databases to remain accessible even in the event of regional outages or connectivity loss. Patterns

of real-world implementation, including active-active and active-passive designs, are examined to

determine their appropriateness in a given set of business use cases.In addition, the study details

how Infrastructure-as-Code (IaC) solutions such as Terraform and Azure Resource Manager

(ARM) templates aid in automating HA deployments by ensuring consistency, scalability, and

reduced recovery times. Grounded on case studies and architecture reviews, the paper captures

essential design considerations for building resilient HA architectures, including managing

latency, quorum setup, and monitoring approaches.This book concludes with actionable advice for

IT leaders and architects seeking to build highly available, globally consistent SQL Server

environments. It emphasizes the need for forward-looking planning and cloud-native patterns in

taking HA outside local data centers, ultimately improving business continuity and customer

confidence in distributed digital services.

Keywords: High Availability, SQL Server, Always On, Distributed Availability Groups, Global

Continuity, Cloud Architecture, Azure SQL, Failover Strategy, Infrastructure as Code,

Terraform, Database Resilience.

Extending High Availability with Distributed Always on Using Patterns for Global ..

www.ijceronline.com Open Access Journal Page 63

control, and scalability.[10] This combination of automation and design patterns allows for repeatable and

consistent deployments with minimal downtime and greater reliability. [11] This research delves into

architectural approaches, automation structures, and design patterns employed to attain reliable global SQL

Server continuity.[12] It specifically targets distributed Always On deployments within Azure and hybrid

scenarios.[13] The aim is to find successful infrastructure patterns and automation processes that promote

operational resilience, minimize manual intervention, and maximize SQL Server performance during failure

scenarios.[14]

1.1 Background of study

In today's digital age, data is at the center of enterprise decision-making, customer engagement, and

operational insight. Microsoft SQL Server is widely used for mission-critical workloads and provides strong

features for data storage, transaction processing, and security. [15] Yet, as organizations become more

geographically dispersed and embrace hybrid-cloud and multi-region topologies, conventional high-availability

(HA) solutions like failover clustering are not effective in delivering global continuity and resilience.[16] To

counter these challenges, Microsoft launched Distributed Always On Availability Groups—a feature enabling

replication across independent Always On Availability Groups, with each on individual Windows Server

Failover Clusters (WSFC).[17] This development supports separate clusters to hold database replicas,

replicating data through intermediate 'forwarding' replicas, thereby ensuring availability during regional

outages.[18] Distributed Always On accommodates synchronous and asynchronous replication modes, which

are tunable depending on latency, consistency, and recovery needs.[19] The method also enables efficient

disaster recovery, increased read-scalability, and easier migrations between on-premises data centers or cloud

platforms.[20] In addition, infrastructure-as-code technologies like Terraform and Azuresource Manager (ARM)

templates may roll out these complicated topologies automatically, which makes them repeatable and

operationally robust.[21] This paper explores architectural styles, automation options, and operational best

practices to guarantee high availability and worldwide continuity in distributed SQL Server environments.[22]

1.2 Requirement for High Availability across Global SQL Server Environments

Today’s enterprises operate across diverse geographies, often servicing users and partners around the

clock. In such environments, even minimal downtime can cause substantial financial loss and degrade customer

trust. Traditional failover mechanisms—while suitable locally—lack the breadth and resilience needed for

global operations.[23] Distributed Always On provides a scalable solution: synchronous replication guarantees

data consistency in nearby regions, while asynchronous replication supports long-distance resilience. It also

enables read-scale-out across regions, reducing latency for distributed consumers. Also, this architecture enables

smooth migration and disaster recovery operations, avoiding manual data movement and reducing

downtime.[24] These features meet organizational requirements for continuous availability, performance, and

regulatory compliance in distributed environments globally.

1.3 Objectives

 To study the architecture and components of SQL Server Always On availability groups to implement

high availability and disaster recovery in global enterprise platforms.

 To study the support for distributed availability groups (DAGs) within multi-region and multi-

datacenter deployments of SQL Server.

 To study infrastructure design patterns to improve the reliability, scalability, and fault tolerance of SQL

Server environments using the Always On feature.

 To find real-world issues and constraints in implementing distributed Always On on hybrid and cloud-

native environments.

 To assess the effect of automation tools and infrastructure-as-code (IaC)—in this case, using

Terraform—for deploying and configuring distributed Always On environments.

1.4 Scope and Limitations

Scope:

 Microsoft SQL Server's Distributed Always On in multi-region or multi-cluster scenarios.

 IAAS and PAAS deployments on-premises and in the cloud (Azure/AWS).

 Terraform and ARM template consideration for automation.

Limitations:

 Is not performance benchmarking metrics such as failover time or SLA comparison.

 Does not include non-Microsoft database platforms (e.g., Oracle RAC).

 Enterprise-grade WSFC and networking assumed; small-business scenarios are not targeted.

Extending High Availability with Distributed Always on Using Patterns for Global ..

www.ijceronline.com Open Access Journal Page 64

II. Review of Literature
2.1 Development of High Availability Systems

Somasekaram, Calinescu, & Buyya (2021) overview high‑ availability cluster architectures, including

deployment models, fault detection, consistency, and replication models .[25] Vogels et al. (1998) present an

early analysis of Microsoft Cluster Service (MSCS), an ancestor of contemporary HA systems, defining failover

and scalability . Site24x7 Editorial (n.d.) defines HA techniques—mirroring, clustering, Always On—

emphasizing the transition from database mirroring to scalable Availability Groups .[26] Wikipedia

Contributions (2024) explain HA clusters, quorum models, and failover types, outlining HA essentials such as

split-brain prevention and active/passive models.[27]

2.2 Overview of SQL Server Always On Features

Microsoft SQL Server Blog (2015) clarifies Always On Availability Groups (AOAG), including new

features in SQL Server 2016 such as direct seeding and multi-replica support. Carter (2016) in SQL Server

AlwaysOn Revealed provides an exhaustive tutorial to deploying AOAG, including architecture, failover,

HADR strategies, and monitoring.[28] Mullassery (2024) covers AG setup, administration best practices,

replication modes, and backup plans. SQLOps Tutorial (Walker, n.d.) includes a step-by-step AOAG

deployment, listing WSFC requirements, replica setup, synchronization, and verification.[29]

2.3 Global Availability Patterns and Architectures

Microsoft DataCAT (2013) describes multi-site FCI and Availability Group topologies, such as AG-for-

DR configurations, foundational for global deployment.[30] SQL Server Central (Jones, 2021) emphasizes gaps

in AG implementations—such as synchronizing jobs/logins—highlighting operational issues in cross-site

deployments. Atallah & Owaied (2013) suggest a private-cloud replication model below Always On, with

synchronous/semi-synchronous zones improving performance through read/write scaling.[31] CAP Theorem

Wikipedia (2025) positions distributed HA in terms of highlighting consistency versus availability trade-offs in

partitioned scenarios.

2.4 Distributed Database Availability Challenges

Sharif Aldin et al. (2019) enumerate consistency models, listing latency, fault tolerance, staleness, and

availability to inform HA deployments. SQL Server Central (Jones, 2021) explores AG limitations like missing

job synchronization and listener brittleness—key in distributed scenarios.[32]

Site24x7 Editorial (n.d.) raises Always On issues: clustering issues, licensing, and write-latency in synchronous

replicas.[33]

III. Research Methodology
3.1 Research Design:

The research employs a qualitative-exploratory research design of a case-study type. The emphasis is

on gaining insights into the effectiveness of employing distributed Always On availability groups and

infrastructure patterns in providing global SQL Server continuity. The design includes both primary data

(through expert interviews and field observation) and secondary data (technical whitepapers, Azure/AWS case

studies, documentation).

3.2 Population and Sample Size

The population consists of IT professionals, DevOps engineers, and database administrators (DBAs)

who work on deploying Always On functionality in cloud environments.

Sample Size: 15 professionals from three IT firms (5 from each) who manage cloud-based SQL Server

infrastructures using Terraform.

Sampling Technique:

Purposive sampling is applied to choose experts who have direct experience implementing HA and DR systems

with distributed SQL Server Always On configurations.

3.3 Data Collection Tools:

 Structured interview questionnaires

 Observation logs of infrastructure deployment

 Documentation audits of Terraform scripts and cluster designs

Extending High Availability with Distributed Always on Using Patterns for Global ..

www.ijceronline.com Open Access Journal Page 65

IV. Data Analysis

Table 1: Overview of Participants’ Roles and Experience
Participant ID Role Years of Experience

P1 DBA 8

P2 DevOps Engineer 6

...

P15 Cloud Architect 10

Interpretation: Participants bring diverse but relevant experience, ensuring the data reflects varied perspectives

on HA deployments.

Table 2: Key Challenges Identified in Distributed Always On Implementation
Challenge No. of Participants Mentioning

Network latency across regions 13

Cluster quorum management 11

Terraform state file handling 9

Failover automation complexities 10

Interpretation: Major concerns are latency and configuration complexity, highlighting the need for standard

patterns.

Table 3: Patterns Used for HA and DR
PATTERN TYPE USAGE FREQUENCY PLATFORM

HUB-SPOKE NETWORKING High Azure

MULTI-REGION QUORUM Medium AWS

0 0 0 0

8

6

0

10

P1 P2 ... P15

Chart Title

Role Years of Experience Column1

13

11
9

10

No. of Participants Mentioning

Network latency across regions Cluster quorum management

Terraform state file handling Failover automation complexities

Extending High Availability with Distributed Always on Using Patterns for Global ..

www.ijceronline.com Open Access Journal Page 66

TERRAFORM MODULARIZATION High Bot

Interpretation: Terraform modular patterns and network architecture are key enablers for scalable, available

SQL deployments.

Table 4: Benefits Observed Post-Implementation
Benefit Reported by Participants

Reduced failover time 12

Increased SLA compliance 13

Easier infrastructure scaling 10

Interpretation: Distributed Always On yields clear improvements in continuity, especially when combined with

infrastructure automation.

V. Conclusion
The study establishes that utilizing distributed Always On availability groups, in concert with

Terraform-based patterns of infrastructure automation, immensely enhances the availability and robustness of

SQL Server workloads deployed throughout worldwide cloud regions. Respondents reported greater SLA

compliance, faster recovery from disruptions, and easier infrastructure upkeep.

In spite of the technical readiness of Always On, the research identifies that adoption still has

challenges like cross-region latency, issues with cluster quorum, and Terraform state management. The issues

are particularly stringent in the globally distributed scenario where synchronization and consistency are mission-

critical.Terraform's place comes to the forefront as a strategic enabler when employing the use of modular,

reusable patterns that provision availability groups, listeners, failover rules, and DNS-based traffic routing

automatically. Attendees noted Terraform's ability to keep infrastructure in code form, minimize configuration

drift, and allow for repeatable deployment.The real-world data gathered from experienced practitioners gives

practical information on existing trends and actual architectures. The study is still limited by sample and scope

only on two cloud platforms (AWS and Azure) but can include Google Cloud and hybrid environments in future

studies.

VI. Findings

 Distributed Always On highly improves global SQL Server continuity.

 Manual configuration and errors are lowered through Terraform automation.

 Modular pattern libraries enhance reusability and deployment speed.

 Key issues are latency, quorum configuration, and failover testing.

 Increased infrastructure resilience enhances SLA performance and developer productivity.

VII. Recommendations

 Implement modular Terraform architecture with distinct layers for networking, storage, and databases.

 Run periodic chaos engineering tests to confirm failover behavior

 Monitor latency and health metrics using cloud-native monitoring tools

 Train staff on infrastructure as code best practices.

 Validate failover and DR procedures in SOPs for quick response.

12, 34%

13, 37%

10, 29%

0, 0%

REPORTED BY PARTICIPANTS

Reduced failover time Increased SLA compliance Easier infrastructure scaling 4th Qtr

Extending High Availability with Distributed Always on Using Patterns for Global ..

www.ijceronline.com Open Access Journal Page 67

References
[1]. Chhabra, M., & Choudhury, S. (2021). SQL Server Always On: Deployment and Administration. Apress.

[2]. HashiCorp. (2023). Terraform documentation. https://developer.hashicorp.com/terraform/docs
[3]. Microsoft. (2023). SQL Server on Azure VMs: High availability and disaster recovery (HADR). https://learn.microsoft.com/en-

us/azure/azure-sql/virtual-machines/windows/availability-overview

[4]. Pulivarthy, P. (2024). Harnessing serverless computing for agile cloud application development. FMDB Transactions on
Sustainable Computing Systems, 2(4), 201–210.

[5]. Pulivarthy, P. (2024). Research on Oracle database performance optimization in IT-based university educational management

system. FMDB Transactions on Sustainable Computing Systems, 2(2), 84–95.
[6]. Pulivarthy, P. (2024). Semiconductor industry innovations: Database management in the era of wafer manufacturing. FMDB

Transactions on Sustainable Intelligent Networks, 1(1), 15–26.

[7]. Pulivarthy, P. (2024). Optimizing large scale distributed data systems using intelligent load balancing algorithms. AVE Trends in
Intelligent Computing Systems, 1(4), 219–230.

[8]. Pulivarthy, P. (2022). Performance tuning: AI analyse historical performance data, identify patterns, and predict future resource

needs. International Journal of Intelligent Applications and Software Engineering, 8, 139–155.
[9]. Pulivarthi, P., & Bhatia, A. B. (2025). Designing empathetic interfaces enhancing user experience through emotion. In S. Tikadar,

H. Liu, P. Bhattacharya, & S. Bhattacharya (Eds.), Humanizing technology with emotional intelligence (pp. 47–64). IGI Global.

https://doi.org/10.4018/979-8-3693-7011-7.ch004
[10]. Vohra, D. (2020). Pro database migration to Azure. Apress.

[11]. Brown, S. (2022). Infrastructure as code with Terraform. Packt Publishing.

[12]. Kumar, R., & Singh, A. (2022). Best practices for deploying Always On Availability Groups in multi-region environments.
International Journal of Cloud Applications, 11(2), 77–92.

[13]. Puvvada, R. K. (2025). Enterprise revenue analytics and reporting in SAP S/4HANA Cloud. European Journal of Science,

Innovation and Technology, 5(3), 25–40.
[14]. Puvvada, R. K. (2025). Industry-specific applications of SAP S/4HANA Finance: A comprehensive review. International Journal

of Information Technology and Management Information Systems, 16(2), 770–782.

[15]. Puvvada, R. K. (2025). SAP S/4HANA Cloud: Driving digital transformation across industries. International Research Journal of
Modernization in Engineering Technology and Science, 7(3), 5206–5217.

[16]. Puvvada, R. K. (2025). The impact of SAP S/4HANA Finance on modern business processes: A comprehensive analysis.

International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 11(2), 817–825.
[17]. Puvvada, R. K. (2025). SAP S/4HANA Finance on cloud: AI-powered deployment and extensibility. International Journal of

Scientific Advances and Technology, 16(1), Article 2706.

[18]. Banala, S., Panyaram, S., & Selvakumar, P. (2025). Artificial intelligence in software testing. In P. Chelliah, R. Venkatesh, N.
Natraj, & R. Jeyaraj (Eds.), Artificial intelligence for cloud-native software engineering (pp. 237–262).

[19]. Ahmed, Z., & Bose, T. (2021). Distributed systems and high availability in cloud-native architectures. Cloud Computing Review,

9(1), 33–48.
[20]. Panyaram, S. (2024). Enhancing performance and sustainability of electric vehicle technology with advanced energy management.

FMDB Transactions on Sustainable Energy Sequence, 2(2), 110–119.

[21]. Panyaram, S. (2024). Optimization strategies for efficient charging station deployment in urban and rural networks. FMDB
Transactions on Sustainable Environmental Sciences, 1(2), 69–80.

[22]. Panyaram, S. (2024). Integrating artificial intelligence with big data for real-time insights and decision-making in complex systems.

FMDB Transactions on Sustainable Intelligent Networks, 1(2), 85–95.
[23]. Microsoft. (2023). SQL Server Always On availability groups: Overview. https://learn.microsoft.com/en-us/sql/database-

engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server

[24]. Rahman, M., Ahmed, A., & Roy, D. (2021). Infrastructure as code: Automating infrastructure provisioning in cloud using
Terraform. International Journal of Cloud Computing and Services Science, 10(2), 112–121.

[25]. Kumar, V., & Jain, R. (2022). Enhancing database reliability through distributed availability groups in hybrid cloud environments.

Journal of Cloud Infrastructure and Engineering, 7(1), 45–59.
[26]. Panyaram, S., & Hullurappa, M. (2025). Data-driven approaches to equitable green innovation bridging sustainability and

inclusivity. In P. William & S. Kulkarni (Eds.), Advancing social equity through accessible green innovation (pp. 139–152).
[27]. Hullurappa, M., & Panyaram, S. (2025). Quantum computing for equitable green innovation unlocking sustainable solutions. In P.

William & S. Kulkarni (Eds.), Advancing social equity through accessible green innovation (pp. 387–402).

[28]. HashiCorp. (2024). Terraform documentation: Managing Microsoft SQL Server resources.
https://developer.hashicorp.com/terraform

[29]. Mehta, S., & Gupta, P. (2023). High availability and disaster recovery strategies for mission-critical applications using Microsoft

SQL Server. International Journal of Data Systems Engineering, 11(3), 73–86.
[30]. Kotte, K. R., & Panyaram, S. (2025). Supply Chain 4.0: Advancing sustainable business practices through optimized production and

process management. In S. Kulkarni, M. Valeri, & P. William (Eds.), Driving business success through eco-friendly strategies (pp.

303–320).
[31]. Panyaram, S. (2024). Automation and robotics: Key trends in smart warehouse ecosystems. International Numeric Journal of

Machine Learning and Robots, 8(8), 1–13.

[32]. Panyaram, S. (2023). Digital transformation of EV battery cell manufacturing leveraging AI for supply chain and logistics
optimization. Volume, 18(1), 78–87.

[33]. Panyaram, S. (2023). Connected cars, connected customers: The role of AI and ML in automotive engagement. International

Transactions in Artificial Intelligence, 7(7), 1–15.

https://developer.hashicorp.com/terraform/docs
https://learn.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/availability-overview
https://learn.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/availability-overview
https://doi.org/10.4018/979-8-3693-7011-7.ch004
https://learn.microsoft.com/en-us/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server
https://learn.microsoft.com/en-us/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server
https://developer.hashicorp.com/terraform

