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I. Introduction 
The two-parameter Weibull distribution is widely recognized for its versatility and is applied across 

various scientific fields. Its ability to model data effectively makes it invaluable in disciplines such as biology, 

environmental science, health, physical sciences, and social sciences. Moreover, the Weibull distribution is 

integral to meteorology, hydrology, and reliability engineering, serving as a fundamental framework for analysing 

time-dependent failure data. Its significance in reliability theory arises from its capability to capture diverse failure 

patterns, from early-life failures to those occurring due to wear and tear, based on its parameterization. This 

flexibility allows researchers and practitioners to predict component lifetimes and assess system reliability, which 

is crucial for maintenance strategies and risk management. 

In the realm of reliability engineering, the Weibull distribution has become a standard tool for estimating 

the time to failure of components and systems. Its broad applicability is supported by foundational studies by 

researchers such as Grace and Eagleson (1966), Crow (1982), and Nathan and McMahon (1990), among others. 

Recent advancements in this area by authors like Lun and Lam (2000), Yang et al. (2007), Krishnamoorthy and 

Lin (2010), Kulkarni and Powar (2011) and Jamdade and Jamdade (2012) further validate its usefulness in 

practical applications. Contributions from J.I. McCool (2012) and Powar and Kulkarni (2015) have also enhanced 

its relevance in contemporary reliability and risk analysis. 

 A continuous random variable (RV) X is said to follow a Weibull distribution with scale parameter α and shape 

parameter β if its probability density function (pdf) is given by, 
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We denote it as X → Weibull (α, β). The failure rate function or hazard function at t, h(t), for Weibull (α, β) 

distribution is,  

ℎ(𝑡, 𝛼, 𝛽) =  𝛽𝑡𝛽−1/𝛼𝛽; 𝑡 > 0, 𝛼 > 0, 𝛽 > 0. 

Precise estimation of the failure rate, also known as the hazard function, is fundamental in reliability 

engineering, especially for systems where components experience failure due to aging or wear-out. 

The two-parameter Weibull distribution is frequently applied to model such behaviours due to its 

versatility in capturing both early-life and wear-out failure patterns. However, confidence interval 

(CI) estimation for the hazard function in this context has been relatively underrepresented in 

research. This paper proposes a new method for constructing CI for the Weibull hazard function 

using the generalized variable (GV) approach, designed for both complete samples and Type-II 

right-censored data. Reliable interval estimates are critical in fields such as aircraft engine 

maintenance and equipment servicing, where they inform decisions regarding maintenance 

scheduling, safety measures, and cost optimization. The proposed CI provides a range for the failure 

rate function, facilitating better planning for component wear, resource management, and regulatory 

adherence. Through a comprehensive simulation study, this method was assessed across different 

sample sizes, levels of censoring, and parameter values. Results indicate that the proposed method 

achieves accurate and focused coverage probabilities, even under conditions with small sample sizes 

or high censoring levels, highlighting its value for reliability engineers in applications where 

accurate failure rate estimation is essential for effective operational planning and safety. 

Keywords: Hazard function, Weibull distribution, Confidence interval, Generalized Variable 

technique, Type II Censoring. 
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The estimation of CI for ℎ(𝑡, 𝛼, 𝛽) for Weibull (α, β) is vital in assessing failure rates, aiding decision-

making across numerous fields. By providing a range of values likely to encompass the true hazard rate, this 

estimation informs strategies for maintenance, resource allocation, and risk management. 

In reliability engineering, accurately predicting when components or systems may fail is essential for 

minimizing downtime and controlling maintenance expenses. Interval estimation of the hazard function enables 

engineers to gain insights into the possible variation in failure rates over time. For example, a company producing 

electronic devices estimates the hazard function for a critical component and determines that the CI for the failure 

rate after 500 hours of operation is between 0.02 and 0.05 failures per hour. This information allows the 

engineering team to strategically schedule maintenance. If the upper limit indicates a heightened risk of failure, 

the team may opt for pre-emptive maintenance to prevent unexpected disruptions, ensuring smoother operations. 

In healthcare, understanding the hazard function can significantly impact treatment strategies for 

diseases, particularly for those with high recurrence rates. For example, during a clinical trial for a new cancer 

treatment, researchers analyse patient data to estimate the hazard function regarding cancer recurrence. If a 95% 

CI for the hazard rate at one-year post-treatment is found to be between 0.10 and 0.20, oncologists can better 

inform patients about their recurrence risks and formulate follow-up care plans accordingly. A higher upper bound 

may indicate a need for more intensive monitoring or additional therapies. 

In the aviation industry, ensuring the reliability of aircraft components is critical for passenger safety. 

Interval estimation of the hazard function plays a key role in maintenance decision-making. For example, an 

airline analyses engine failure data and uses the two-parameter Weibull distribution to estimate the hazard 

function. If a 90% CI for the hazard rate at 1,000 flight hours is calculated to be between 0.01 and 0.03 failures 

per flight hour, the airline can utilize this information to establish maintenance schedules that pre-empt potential 

failures, thereby enhancing safety and adhering to industry regulations. 

Interval estimation is also instrumental in quality control processes, allowing manufacturers to assess 

product reliability effectively. For example, a battery manufacturer evaluates the reliability of a new battery model 

by fitting a two-parameter Weibull distribution to their failure time data. If the 95% CI for the hazard function at 

300 cycles is found to be between 0.005 and 0.015 failures per cycle, the manufacturer gains crucial insights. A 

lower bound that indicates reliability may prompt the company to market the product more aggressively, while a 

higher upper bound could lead to design improvements. 

In environmental studies, evaluating the risk of failure in critical infrastructure, such as levees and dams, 

is essential for public safety. For example, Engineers tasked with assessing the integrity of a levee system might 

apply interval estimation of the hazard function based on historical flood data. If they find a 95% CI for the hazard 

rate suggesting a failure rate of between 0.0005 and 0.002 failures per year, this information can guide 

maintenance strategies, investment decisions, or even emergency response plans during extreme weather events. 

These examples emphasize that interval estimation of the hazard function for the two-parameter Weibull 

distribution is a fundamental tool for managing risk and improving decision-making across diverse sectors, 

including engineering, healthcare, aviation, manufacturing, and environmental science. By offering a reliable 

range of possible values for failure rates, stakeholders can develop effective maintenance strategies, allocate 

resources judiciously, and enhance safety measures.  

In various reliability and life-testing studies, researchers often encounter challenges when trying to gather 

complete data on failure times for all experimental units. For instance, in clinical trials, constraints such as limited 

funding can lead to participant dropout before the study concludes. Likewise, in industrial settings, units may 

either experience unforeseen failures or be intentionally withdrawn prior to failure to save time and minimize 

costs. The resulting data from such studies are classified as censored data, which can complicate statistical 

analyses and the resulting interpretations. 

Among the various types of censoring, Type-I and Type-II are the most recognized. Type-I censoring 

occurs when the experiment has a fixed duration, denoted as T, while the number of failures can vary. In contrast, 

Type-II censoring is defined by a predetermined number of failures, referred to as r, with the duration of the 

experiment being variable. This article emphasizes the GV method, which is well-suited for analysing Type-II 

singly right-censored samples. In this scenario, the pivotal quantities employed for maximum likelihood 

estimators (MLEs) remain applicable, allowing for effective estimation of the hazard function even when data is 

censored. 

While the Weibull distribution is extensively utilized in various domains, the literature has largely 

overlooked the estimation of CI for its hazard function. This gap is especially significant in the context of small 

sample sizes, where the challenges associated with accurately estimating CI can be heightened. Filling this void 

is essential for improving the reliability of hazard function evaluations, particularly in real-world applications 

where data may be limited.  

This article presents an empirical analysis that reveals a strong correlation between the estimated 

coverage probabilities and the nominal coverage probabilities for the proposed method of CI estimation for the 

hazard function ℎ(𝑡, 𝛼, 𝛽). This correlation is especially noticeable when assessing various t values in uncensored 
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samples, particularly in situations involving small sample sizes. Such circumstances are often encountered in 

healthcare research, where the high costs of laboratory testing for contaminants can limit sample sizes.  

As regulatory frameworks may require the estimation of the hazard function at larger t values using small 

to moderate sample sizes, addressing this issue is vital. Thus, the objective of this article is to introduce a new 

method for estimating CI for the hazard function of the commonly used Weibull distribution. The proposed 

approach aims to maintain a close alignment of coverage probabilities with nominal values, even when faced with 

small sample sizes and in both uncensored and censored data contexts for all values of t. 

This study tackles the statistical challenge of constructing CI for the hazard function of the Weibull 

distribution through the GV approach, originally developed by Tsui and Weerahandi (1989) and further advanced 

by Weerahandi (1993). For a more in-depth understanding of the GV approach and its wide-ranging applications, 

Weerahandi’s works (1995, 2004) provide valuable insights. Hannig et al. (2006) also offer illustrative examples 

that highlight the practical use of this method. The GV approach facilitates the creation of a generalized pivotal 

quantity (GPQ), which is instrumental in deriving CIs for various parametric functions.  

A GPQ is distinct from traditional pivotal quantities, as it is derived from observed statistics combined 

with random variables, without depending on unknown parameters. A major advantage of the GV method is its 

flexibility in forming a GPQ for parameter functions by substituting GPQs associated with each parameter 

individually (Krishnamoorthy et al., 2009). This study presents a GV-based technique for constructing two-sided 

CI for the hazard function in distributions with defined GPQs for their parameters. The performance of this method 

is examined through numerical simulations for the Weibull distribution, incorporating both uncensored data and 

Type-II singly right-censored samples.  

The layout of this paper is structured as follows: Section 2 reviews the foundational concepts related to 

GPQs and introduces the proposed approach. Section 3 describes the methodology for constructing CI for the 

Weibull distribution's hazard function. Section 4 outlines the simulation studies conducted to evaluate the CI 

coverage probabilities of the proposed method and section 5 concludes with a summary of the main findings and 

implications.  

 

II. A GPQ Method for Reliable CI Estimation: 
A GPQ, symbolized as 𝐺𝜃 for a parameter θ, is defined through a random variable 𝑇𝜃(𝑋; 𝑥). In this context, X is 

a random variable whose distribution depends on both the primary parameter θ and an additional nuisance 

parameter δ. The observed value of X is represented by 𝑥, and the GPQ 𝑇𝜃(𝑋; 𝑥) is structured to fulfill two main 

conditions: 

1. At 𝑋 = 𝑥, the GPQ 𝐺𝜃 = 𝑇𝜃(𝑋; 𝑥) remains unaffected by the nuisance parameter δ. Often, this means 

𝐺𝜃 = 𝜃.  

2. The distribution of 𝐺𝜃 = 𝑇𝜃(𝑋; 𝑥), conditioned on 𝑋 = 𝑥, does not involve any unknown parameters. 

These characteristics make GPQ a useful tool for parameter estimation that is independent of nuisance parameters. 

  

2.1 An Innovative Method for CI Estimation of Population Hazard Function: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 represent a random sample of size n from a distribution with the probability density function 

𝑓𝑋(𝑥; 𝜃), where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘) denotes a vector of unknown parameters. For each component of 𝜃 ∈ 𝛩 ⊆

 ℜ𝑘, a GPQ is assumed to be available, denoted by                    𝐺𝜃 = (𝐺𝜃1
, 𝐺𝜃2

, … , 𝐺𝜃𝑘
). Let ℎ(𝑡, 𝜃) be the hazard 

function of X. Although ℎ(𝑡, 𝜃) may not always have a straightforward analytical form, it can be computed 

numerically for specific values of t and θ. A GPQ for ℎ(𝑡, 𝜃) can be expressed as:  

𝐺ℎ𝑡
= ℎ(𝑡, 𝐺𝜃)     (1) 

where 𝐺ℎ𝑡
 follows a distribution independent of θ. To construct a two-sided CI for ℎ(𝑡, 𝜃) at a confidence level 

of (1−δ) ×100, based on the GPQ 𝐺ℎ𝑡
, the following procedure can be applied: 

1. For observed data 𝑥 and maximum likelihood estimates (or other appropriate estimators) 𝜃0̂ of 𝜃, repeat 

the steps below N times (e.g. N=100,000): 

i. Compute GPQs 𝐺𝜃 = (𝐺𝜃1
, 𝐺𝜃2

, … , 𝐺𝜃𝑘
) for 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘), possibly using the method 

outlined by Iyer and Patterson (2002). 

ii. Calculate 𝐺ℎ𝑡
 using the above expression (1). 

2. The percentiles (100×δ/2) and 100×(1−δ/2) of the N generated values of 𝐺ℎ𝑡
 provide the lower (L) and 

upper (U) bounds, respectively, of the two-sided (1−δ) ×100% CI for ℎ(𝑡, 𝜃), denoted as [L, U]. This interval 

serves as the "Generalized Confidence Interval (GCI)" for ℎ(𝑡, 𝜃).  

The GPQ-based inference technique is known for yielding precise results, as discussed, for example, by Roy and 

Bose (2009).  
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III. Proposed CI for the Weibull Hazard Function 𝒉(𝒕, 𝜶, 𝜷): 

For a complete sample, the maximum likelihood estimator (MLE) for the parameter β, denoted as �̂�, is determined 

by solving the following equation: 

1

�̂�
−

∑ 𝑥𝑖
�̂� 𝑙𝑜𝑔(𝑥𝑖)𝑛

𝑖=1

∑ 𝑥𝑖
�̂�𝑛

𝑖=1

+
1

𝑛
∑ 𝑙𝑜𝑔(𝑥𝑖)𝑛

𝑖=1 = 0  (2) 

Alongside this, the estimator for α is given by: 

�̂� = (∑ 𝑥𝑖
�̂� /𝑛

𝑛

𝑖=1

)

1/�̂�

 

In the context of a Type-II singly right-censored sample, where only the smallest r observations are available in 

an ordered form 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑟), the MLE for β can be computed by solving the following equation: 

1

�̂�
−

∑ 𝑥𝑖𝑢
�̂� 𝑙𝑜𝑔(𝑥𝑖𝑢)𝑛

𝑖=1

∑ 𝑥𝑖𝑢
�̂�𝑛

𝑖=1

+
1

𝑟
∑ 𝑙𝑜𝑔(𝑥𝑖𝑢)𝑟

𝑖=1 = 0  (3) 

The estimator for α remains: 

�̂� = (∑ 𝑥𝑖𝑢
�̂� /𝑛

𝑛

𝑖=1

)

1/�̂�

 

In this case, 𝑥𝑖𝑢 = 𝑥(𝑖) denotes the observed values in ordered form for i =1, 2,…,r and        𝑥𝑖𝑢 = 𝑥(𝑟) for 

i=r+1,…,n. 

To solve equations (2) and (3) iteratively, the Newton–Raphson method can be applied. Additionally, statistical 

software such as R and MINITAB offers functionalities for directly estimating these parameters, streamlining the 

analysis process. 

 

3.1 Exploring GPQs for the Parameters 𝜶, 𝜷 and Hazard Function 𝒉(𝒕, 𝜶, 𝜷): 

Krishnamoorthy et al. (2009) introduced the concept of GPQs for the parameters α and β. Denote 𝛼0̂ and 𝛽0̂ as 

the observed maximum likelihood estimates (MLEs) for α and β, respectively. The GPQs for these parameters can 

be formulated as follows:  

𝐺𝛼 = 𝛼0̂  (
𝛼

�̂�
)

�̂�/𝛽0̂
= 𝛼0̂ (

1

�̃�
)

�̃�/𝛽0̂
   (4) 

and 

𝐺𝛽 =
𝛽

�̂�
 𝛽0̂ =

𝛽0̂

�̃�
    (5) 

In these expressions, �̃�  and 𝛽 are the MLEs for α and β derived from either censored or uncensored samples from 

a Weibull (1,1) distribution. Using equation (1) as a reference, the GPQ for the hazard function ℎ(𝑡, 𝛼, 𝛽) can be 

expressed as:  

𝐺ℎ𝑡
= ℎ(𝑡, 𝐺𝛼 , 𝐺𝛽) = 𝐺𝛽𝑡𝐺𝛽−1/𝐺𝛼

𝐺𝛽 = �̃�
𝛽0̂

�̃�
(𝑡)

𝛽0̂
�̃�

−1
(𝛼0̂)

−
𝛽0̂
�̃�   (6) 

To construct a two-sided (1−δ)×100% GCI for ℎ(𝑡, 𝛼, 𝛽) when 𝑡 > 0, 𝛼 > 0, 𝛽 > 0 and using a complete sample, 

the following algorithm may be applied. This procedure can also be adapted for Type-II singly right-censored 

samples by substituting the relevant MLEs and GPQs.  

 

Algorithm Steps: 

1. Determine the MLEs 𝛼0̂ and 𝛽0̂ for the parameters 𝛼 and 𝛽 from a sample 𝑥1, 𝑥2, … , 𝑥𝑛 of size n, 

assuming a Weibull (α, β) distribution. 

2. Using the values 𝛼0̂ and 𝛽0̂, repeat the following steps N times (e.g. N=100,000): 

i. Generate n independent random values 𝑥111
, 𝑥211

, 𝑥311
, … , 𝑥𝑛11

 from a           Weibull (1,1) 

distribution, then compute �̃�  and 𝛽, the MLEs for 𝛼 and 𝛽 based on this simulated sample.  

ii. Using the computed values in Equations (4) and (5), determine the GPQs 𝐺𝛼  and 𝐺𝛽.  

iii. Substitute these GPQs into Equation (6) to calculate 𝐺ℎ𝑡
, the GPQ for ℎ(𝑡, 𝛼, 𝛽). 

3. The (1−δ)×100% GCI for ℎ(𝑡, 𝛼, 𝛽) at t >0 is then constructed as: 

[𝐺ℎ𝑡;𝛿/2,  𝐺ℎ𝑡;1−𝛿/2 ]   (7) 

 

where 𝐺ℎ𝑡;𝛿 represents the (100×δ)th percentile of the GPQ values 𝐺ℎ𝑡
 obtained from the simulations. 

 

IV. Simulation study 
The two-parameter Weibull distribution is widely applied in areas such as manufacturing, healthcare, and 

technology, with its effectiveness demonstrated in studies by Lun and Lam (2000), Krishnamoorthy and Lin 
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(2010), and Jamdade and Jamdade (2012). This study carries out a simulation-based evaluation of the GCI 

proposed, focusing on both complete and type-II censored sample cases. 

In this analysis, a significance level of 0.05 is set, generating 10,000 samples from a Weibull distribution 

with scale parameters α=0.5,1,2,…,10 and shape parameters β=0.3,0.5,1.5,2,3,5,7,9,10 considering values of t 

such that hazard function takes the values 10, 25, 50 and 100 across sample sizes n=5,15,25,50. The lower and 

upper bounds, Li and Ui (for i=1,2,…,10,000), for the two-sided CI are calculated based on Equation (7), and 

coverage probability is then determined, showing how often the true value of h(t,α,β) is included within each 

interval. 

The study’s goal is to evaluate the performance of the CI estimator over various sample sizes (n) and t 

values. Figure 1 presents boxplots of coverage probabilities across all combinations of n, α, β, and h(t,α,β). The 

results highlight that the GV method consistently produces coverage probabilities near the nominal level with 

minimal variation, confirming its strong performance. As noted by Roy and Bose (2009), the GV method achieves 

exact results, distinguishing this approach as particularly precise, and we recommend its use in applied settings. 

In type-II censored samples, the proportion of censored observations, denoted by  PC=P(X > X(r)), is 

tested at levels of 0.3, 0.5, and 0.7. Figures 2 ,3, 4 and 5 provide graphical representations of these cases for n=5, 

15, 25 and 50 respectively. Visuals from Figures 1 to 5 demonstrate that the proposed method maintains coverage 

probabilities close to 0.95, even for small uncensored sample sizes like n=5, and continues to achieve accurate 

results for censored samples as long as the proportion of censored observations is up to 0.70.  

 

V. Overall conclusion 
This paper introduces a novel approach for constructing CI for the hazard function of a two-parameter 

Weibull distribution using the generalized variable technique. The method is designed to handle both complete 

and Type-II censored data and is easy to implement. Simulation results indicate that the proposed CI maintain 

coverage probabilities close to the intended values, even when sample sizes are small (as low as five observations) 

in uncensored cases, and for Type-II right-censored samples with up to 70% censoring. The practical utility of the 

method is demonstrated through the analysis of real-world datasets, illustrating its effectiveness in assessing health 

risks associated with environmental exposure to chemicals and microbes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
          

 

 

 

 

 

 

 

 

 

 

Fig.1 Box plots of simulated expected coverage probabilities (in percentage) for 95% CI based upon proposed 

GV method for sample sizes n=5,15,25 and 50 over the range of  α = 0.5,1,2,…,10, β=0.3,0.5,1.5,2,3,5,7,9,10 and 

h(t) = 10, 25, 50 and 100. 

 

 

 

 



Confidence interval for a hazard function of a two parameter Weibull distribution  

www.ijceronline.com                                                Open Access Journal                                                   Page 38 

 

        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig.2 Box plots of simulated expected coverage probabilities (in percentage) for 95% CI based upon proposed 

GV method for sample size n=5 over the range of   α = 0.5,1,2,…,10, β=0.3,0.5,1.5,2,3,5,7,9,10 and h(t) = 10, 25, 

50 and 100 for Type-II censored samples with proportion of censoring (in percentage) PC= 30%, 50%, 70%. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig.3 Box plots of simulated expected coverage probabilities (in percentage) for 95% CI based upon proposed 

GV method for sample size n=15 over the range of  α = 0.5,1,2,…,10, β=0.3,0.5,1.5,2,3,5,7,9,10 and h(t) = 10, 

25, 50 and 100 for Type-II censored samples with proportion of censoring (in percentage) PC= 30%, 50%, 70%. 
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Fig.4 Box plots of simulated expected coverage probabilities (in percentage) for 95% CI based upon proposed 

GV method for sample size n=25 over the range of  α = 0.5,1,2,…,10, β=0.3,0.5,1.5,2,3,5,7,9,10 and h(t) = 10, 

25, 50 and 100 for Type-II censored samples with proportion of censoring (in percentage) PC= 30%, 50%, 70%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Box plots of simulated expected coverage probabilities (in percentage) for 95% CI based upon proposed 

GV method for sample size n=50 over the range of     α = 0.5,1,2,…,10, β=0.3,0.5,1.5,2,3,5,7,9,10 and h(t) = 10, 

25, 50 and 100 for Type-II censored samples with proportion of censoring (in percentage) PC= 30%, 50%, 70%. 
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