
ISSN (e): 2250 – 3005 || Volume, 12 || Issue, 3|| May. - June. – 2022 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 9

A Study of POSIT Arithmetic Implementations

Meesala Sowmya, Kala S, Nalesh S
1Undergraduate Student, 2Assistant Professor

Department of Electronics And Communication Engineering,

Indian Institute of Information Technology Kottayam, Kottayam –626635, Kerala, India.
2 Assistant Professor,

Department of Electronics,

Cochin University of Science And Technology, Kochi-686620, Kerala, India.

Corresponding Author: Kala S

Date of Submission: 13-06-2022 Date of acceptance: 27-06-2022

I. INTRODUCTION
Floating-point numbers, like scientific notations, are represented by an exponent (normally in base two) and a

significand, except that the significand must fit on a limited number of bits. Floating point representation is

conceptually similar to scientific notation, and it consists of a signed number, also known as the significand,

mantissa, coefficient, or ambiguously fraction. This number is encoded as a digit string of a specific length.

It also consist of a signed integer exponent (base two) that changes the magnitude of a number. To find out the

value of a floating-point number F, the significand or mantissa M is multiplied by the base β raised to the power

of the exponent E, as indicated by,

F = M × βE

 IEEE-754 floating point numbers have the format shown in Fig.1. The number contain following fields: one

sign bit S, 2 bit biased exponent, the biased exponent has trailing bits indicating fractions and the leading
bit of the fraction is implicitly encoded.

Fig. 1: Floating point Number Format

ABSTRACT

Since mankind started counting, there have been multiple numbering systems, each with its own

advantages and disadvantages. We use Arabic numerals, which are base-10 system, whereas

computers use binary numbers, which are base-2. Representing real numbers accurately and

efficiently on devices that can handle only discrete and finite information is challenging. The IEEE

standard for floating point numbers is the most common implementation that modern computing

systems have adopted. But due to the deficiencies in the standard, different implementations of

IEEE-754 are not guaranteed to give same answers. IEEE-754 also suffer from limitations like

redundant representation for numbers, signed zeros, overflow/underflow issues, etc. Floating point

numbers are known to have large energy and area footprints when implemented in hardware. To

address the shortcomings, a new data type called posit was proposed in 2017. Posit numbers are the

result of decades of work in creating a viable replacement for floating point numbers, and they
have better accuracy, speed, and simpler design. Posit arithmetic has been introduced as a

replacement to IEEE 754- floating point arithmetic number system. In this paper we discuss

various posit arithmetic implementations in the literature.

KEYWORDS: Floating point number system, posit arithmetic, hardware implementations,

accuracy.

A Study of POSIT Arithmetic Implementations

www.ijceronline.com Open Access Journal Page 10

Problems with Floating point format:

1. Wasted Bit Patterns - There are approximately eight million ways to represent 32-bit IEEE floating point.

While NaN (Not-A-Number) has two quadrillion, 64-bit floating point has approximately two quadrillion. 2.251

× 10
15

 to be more precise. A NaN is an exception value used to represent undefined or invalid results, such as

the result of a division by zero.

2. Doesn’t obey common properties of numbers - The format specifies two zeroes, a negative zero and a positive

zero, both of which behave differently. - Associative and distributive law loss as a result of rounding after each

operation. Because of the loss of associative and distributive arithmetic behavior, concurrent programmes that

use IEEE floating point produce irreproducible results. This is especially troublesome for embedded and control

applications.
3. Overflows to ± inf and underflows to 0 - Overflowing to ± inf increases the relative error by an infinite factor,

while underflowing to 0 loses sign information.

4. Complex Circuitry - Denormalized floating point numbers contain a hidden bit of 0 rather than 1. This results

in a slew of new handling requirements, complicating compliant hardware implementations.

II. POSIT NUMBERS
Posit numbers were introduced by John L. Gustafson in 2017 “as a direct drop-in replacement for IEEE 754

standard for floating-point numbers” [1]. Like floats, posits round off an answer if it is not exact. Hence, they do

not require interval arithmetic or variable size operands. Yet they provide undeniable advantages over floats,

including but not limited to: greater dynamic range, higher accuracy, better closure, cross-system identical
results for bitwise operations, and easier exception handling. Posits never overflow to infinity or underflow to

zero; rather, the greatest and least possible representations are used for the same. "Not-a-Number" (NaN) is used

to indicate an action instead of a bit pattern. Simpler hardware design is possible due to lesser instances of

special reserved values, compared to floating point representation. Hence, a posit processing unit takes less

circuitry than an IEEE float FPU. With lower power use and smaller silicon footprint, the posit operations per

second (POPS) supported by a chip can be significantly higher than the FLOPS using similar hardware

resources. GPU accelerators and Deep Learning processors can do more per watt and per dollar with posits and

still deliver superior answer quality. A posit format is defined as a tuple <n, es>, where n is the total bit-width

and es is the maximum number of bits reserved for the exponent field.

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) was introduced in 1985 and since then, it

witnessed mass adoption and the vast majority of modern computers have a floating point coprocessor. Even

thought floating point numbers have its own flaws, they survived this long because of lack of a viable alternative

to them. Cost of hardware implementation and energy consumption issues of floating point numbers makes

them unsuitable or inefficient for IoT and machine learning tasks. Posit numbers were introduced to solve many

of the problems with floating point numbers. For mainstream adoption of posit numbers, efficient hardware
implementations and more studies about viability of using posits as a drop-in replacement for floating point

numbers are needed.

III. RELATED WORKS
The paper [1] introduced the concept of posit numbers in 2017. Posit numbers borrow many concepts from its

predecessor, unums or universal numbers introduced in 2015. The paper also discusses about application of

posit numbers in deep neural networks and presents studies about training deep neural network on 8 bit posit
numbers. The results are comparable to results obtained through 16-bit floating point numbers. This work

compares floating point and posit numbers in depth with many useful visualizations that show advantages of

posit numbers over floating point. For same bit-width, posit numbers are shown to have larger dynamic range

and precision around zero. Posit numbers are also shown to give exact answers for a larger range or numbers for

addition.

The work in [2] is a highly influential paper from 1991 that tried to make inner workings of floating-point

numbers known to everyone. This paper presents a tutorial on the aspects of floating-point that have a direct

impact on designers of computer systems. It begins with background on floating-point representation and

rounding error, continues with a discussion of the IEEE floating point standard, and concludes with examples of

how computer system builders can better support floating point.

The work in [3] proposes several hardware implementations for posit arithmetic units and contain they include

Posit adder/subtractor, multiplier, divider, and square root. Implementation was done on a Xilinx Virtex-7

FPGA VC709 platform. To reduce circuit area, instead of using a Leading Zero Detector (LZD) and a Leading

Ones Detector (LOD), the authors choose to implement only a Leading Zeros Detector and argues that

implementing both LZD and LOD is suboptimal. The authors also use a modular architecture which includes a

A Study of POSIT Arithmetic Implementations

www.ijceronline.com Open Access Journal Page 11

encoder, calculator, and a decoder module. They conclude paper remarking that the LZD design could have

been better.

In work [4], the authors present an architecture of a parameterized Posit Arithmetic Unit generator that can

generate adders and multipliers of any bit-width pre-synthesis. They synthesize generated arithmetic units using

the parameterized generator for 8-bit, 16-bit, and 32-bit adders and multipliers and compare them with IEEE

754-2008 compliant adders and multipliers. In their comparison of m-bit units with n-bit IEEE 754-2008

compliant units, it is observed that the area and energy of an adder and multiplier are comparable to their IEEE

754-2008 compliant counterparts where m = n.

The paper [5] is about how the Single-Precision Floating Point (“F”) extension of RISC-V can be leveraged to

support posit arithmetic. They also present the implementation details of a parameterized and feature-complete

posit Floating Point Unit. The posit FPU has been integrated with the RISC-V compliant SHAKTI C-class core

as an execution unit. To enable the compilation and execution of C programs on PERI, they have also made
minimal modifications to the GNU C Compiler (GCC), targeting the “F” extension of the RISC-V.

Authors in [6] enable application-level evaluations of the posit system that include performance and resource

consumption. To this purpose, this work introduces an open-source hardware implementation of the posit

number system, in the form of a C++ templatized library compatible with Vivado HLS. This library currently

implements addition, subtraction and multiplication for custom-size posits. In addition, the posit standard also

mandates the presence of the “quire”, a large accumulator able to perform exact sums of products. The proposed

library includes the first open-source parameterized hardware quire. However, this work concluded that the 32

bit posit adders and multipliers are much larger and slower than the corresponding floating point operators.

IV. IMPLEMENTATION
We have written the RTL of posit adder using Verilog HDL. After creating the hardware description, its

correctness is verified and the process is known as behavioral simulation. The design is converted into netlist

which lists logic elements needed to implement the design in hardware. FPGA (Field Programmable Gate

Array) synthesis is performed by dedicated synthesis tools. Functional simulation is done after the synthesis

stage. The netlist or output of the synthesis of your design will be determined and consists of three steps:

translate, map, and place and route. The netlist file from synthesis stage does not specify the physical layout of

the logic elements in the final design. Goal of the implementation stage is to take the netlist and implement it to

the target FPGA device. Timing simulation is done after the implementation stage, and it check for possible

timing violations like setup/hold violations. Finally, the design is converted into a file format that is understood

by the target FPGA known as the bitstream file. After generation of the bitstream file, it is then transferred
into the target FPGA usually using a JTAG connection.

We implemented the posit adder using Xilinx Vivado HLS. The schematic of the design has been shown in

Figure 2.

Fig. 2: Elaborated Design of POSIT Adder Exported from Xilinx Vivado

A Study of POSIT Arithmetic Implementations

www.ijceronline.com Open Access Journal Page 12

V. CONCLUSION
Through this work, we saw why posit numbers are a promising new replacement for IEEE floating point

numbers. We also explored literature on implementing posit arithmetic units. From literature review, We found

that only a few works have been carried out in implementing posit arithmetic unit since posits are a relatively

new concept. With this work, we will be contributing to fill this gap and guide future researchers looking for a

viable replacement for floating point numbers. We have designed and implemented Posit arithmetic unit and a

custom verification library in python. We have tested the arithmetic units completely and made sure that the

design is correct and conforming to the posit standard. The implementation results and performance show that

posit numbers are indeed a viable replacement for the IEEE-754 floating point numbers, and we can expect

more works in this area in coming years and more hardware designs using posit numbers instead of traditional

floating-point numbers.

REFERENCES
[1]. John L. Gustafson and Isaac T. Yonemoto. “Beating Floating Point at its Own Game: Posit Arithmetic”. In: Supercomputing

Frontiers and Innovations 4.2 (Apr. 2017),pp. 71–86. doi: 10 . 14529 / jsfi170206. url: https : / / superfri . org / index .

php/superfri/article/view/137.

[2]. David Goldberg. “What Every Computer Scientist Should Know about Floating-Point Arithmetic”. In: ACM Comput. Surv. 23.1 (Mar.

1991), pp. 5–48. issn: 0360-0300. doi:10.1145/103162.103163. url: https://doi.org/10.1145/103162.103163.

[3]. Feibao Xiao et al. “Posit Arithmetic Hardware Implementations with The Minimum Cost Divider and SquareRoot”. In: Electronics

9.10 (2020). issn: 2079-9292. doi: 10.3390/electronics9101622. url: https://www.mdpi.com/2079-9292/9/10/1622.

[4]. Rohit Chaurasiya et al. “Parameterized Posit Arithmetic Hardware Generator”. In: 2018 IEEE 36th International Conference on

Computer Design (ICCD). 2018, pp. 334–341. doi: 10.1109/ICCD.2018.00057.

[5]. Sugandha Tiwari et al. “PERI: A Configurable Posit Enabled RISC-V Core”. In: ACM Trans. Archit. Code Optim. 18.3 (Apr. 2021).

issn: 1544-3566. doi: 10.1145/3446210. url: https://doi.org/10.1145/3446210.

[6]. Yohann Uguen, Luc Forget, and Florent de Dinechin. “Evaluating the Hardware Cost of the Posit Number System”. In: 2019 29th

International Conference on Field Programmable Logic and Applications (FPL). 2019, pp. 106–113. doi: 10.1109/FPL.2019.00026.

Kala S, et. al. "A Study of POSIT Arithmetic Implementations." International Journal of

Computational Engineering Research (IJCER), vol. 12, no.3, 2022, pp 09-12.

https://doi.org/10.1145/3446210

