
International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 83

Software Visualization of Text Content in Ecosystem

Karthiga Mohanmani
1
, Chamundeswari Arumugam

 2
,

P.G. Student, Professor (Computer Science and Engineering),

Department of Computer Science and Engineering,

SSN College of Engineering, Rajiv Gandhi Salai, Kalavakkam-603110,

Chennai, Tamilnadu, India.

Abstract

Software ecosystem analysis is on focus due to open source communities. It need to be analyzed at the high level through

visualization techniques for the better understanding of the interactive relationship. Analysis of ecosystem has been usually

represented using developer’s data, project’s data, based on the dependencies that exist. Dependencies at high level are explored,

while the low level fine grained information is unexplored. Thus an attempt has been done in this paper, to visualize the low

level information related to open source ecosystem GRAPPA. This ecosystem’s source files are analyzed with the low level

vocabularies such as non-keywords and represented as tag cloud. Tag cloud visualizes all the non-keywords such as class name,

methods, and data in GRAPPA. This analysis exposes the project vocabularies with different weight based on the frequency

count.

Keywords— software ecosystem, text visualization, tag cloud, tag operation.

I. INTRODUCTION
Software Visualization is the static or animated 2D or 3D visual representation of information about software systems based on

their structure, history or behavior. It is defined as a discipline that makes use of various forms of imagery to provide insight and

understanding and to reduce complexity of the existing software system under consideration [1]. Tools for the software

visualization can be used to visualize source code and quality defects during software development and maintenance activities. It

has been applied in various areas like algorithm animation, software engineering, concurrent program execution, static and

dynamic visualizations of object-oriented code, fault diagnostics, debugging, and requirements analysis. A software ecosystem is

a collection of software projects which are developed and co-evolved together in the same environment [2]. The need for tools

and techniques to recover the source code traceability in an ecosystem is particularly important for a variety of software

engineering tasks. Some examples of ecosystem are CinCom, SCG, REVEAL, SOOPS has 288, 210, 55, 249 projects

respectively. The Small Project Observatory (SPO) is a tool

that is used to analyze the software ecosystem. The SPO [2] [3] tool visualizes the different type of views such as project

timelines, project dependency map, project vocabulary map, and developer collaboration map. The first visualization tools

SeeSoft [4] summarizes changes in the software at the level of lines of code. MOOSE is a tool that functions as a repository for

software models, and it provides numerous services for importing, viewing, querying and manipulating these models [5].

 The visual perspective of project vocabulary map [2] represented in SPO, show information only about the elements that are

relevant at the high level abstraction of an ecosystem. However, there are cases in which visualization should support navigating

at a lower level abstraction that enables to view the vocabulary perspective inside an ecosystem. The objective of the paper is to

analyze the vocabularies in an ecosystem and visually represent it as a tag cloud. Non-keywords in the ecosystem’s project are

extracted and based on the frequency count, weight are assigned. Based on weight, the vocabularies are represented in

vocabulary tag cloud. Thus the vocabulary tag cloud summaries all vocabularies or of an ecosystem.

 The organization of the paper is as follows. Section 2 discuss with the related work. Section 3 discuss analyzes of GRAPPA

software ecosystem. Sections 4 discuss tag cloud. Section 5 describes the tag operation. Section 6 describes conclusion and future

work.

II.RELATED WORK
A software ecosystem can be defined as a collection of software projects that belong to an organization and are developed in

parallel by the organization [6]. The organizations can be a company, a research group or an open source community. When

analyzing software ecosystems, exploration and visualization are important because of the large amounts of information that can

be made available about the ecosystem. The various goals[8] to analysis the ecosystem are to understand the past, control the

present, shape the future, etc. Kawaguchi et al. [13] used Latent Semantic Index (LSI) to categorize software systems in open-

source software repositories.

 Maletic et al. [9] worked on software reverse engineering and applied LSI to analyze the semantic clusters in Mosaic

documents files. M Lungu [6] differentiated between that the two levels of abstraction such as intra-system and inter-system in

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 84

reverse engineering software ecosystems. To visualize the source code the author developed a static hierarchical decomposition

model, at intra level. Explored three view points at inter system level such as overview viewpoints, developer viewpoints, project

viewpoints using the various concepts like projects structure, relationship and evolution. Softwarenaut [7] is a tool that provides a

high-level view on the system that supports various gardening operations, generating new views such as expanding nodes,

collapsing nodes, filtering out nodes and edges. This approach visualizes the high level view of the reverse engineering software

ecosystem at two levels and it not applicable in forward engineering ecosystem.

 Marcus et al. [10] used LSI to detect high-level conceptual clones, using the LSI, to spot the similar terms. LSI was also

used to recover links between external documentation and source code [11]. Marcus et al. [12] employed LSI as a search engine

and formulated the queries to detect concept location in the code. M Lungu et al. [2] proposed SPO tool to analyze ecosystem

engineering. This tool will visualize the different type of views such as project timelines, project dependency map, project

vocabulary map, developer collaboration map, and set of timeline views [2] [3]. The vocabulary map [2] presents the summary of

the terms used in the Moose software. The code is analyzed, the identifiers split in component words, these words are stemmed

and then the final statistics on the frequency of occurrence of the words is presented as a tag cloud. Tag cloud is a text-based

visual representations depicting tag importance by font size. In this approach, the vocabularies in a tag cloud represent only the

high level abstraction words.

 M Lungu et al. [8] worked on the software ecosystem in the context of the developer contribution. SPO tool automatically

recover the domain of expertise of the individual developers in the ecosystem. Domain of expertise is the vocabulary to the tag

cloud representation. Recent trends in social and collaborative software have greatly increased the popularity of tag cloud

visualization [14].

 P Alberto et al. [15] proposed a method to identify interrelated tags based on the textual content of tagged web documents

by means of Self-Organizing Maps (SOM). It extracts the most relevant terms for each group of tags by means of language

modeling techniques. The resulting SOM turns into a richer tag cloud that provides an alternative way to visualize and navigate

the tags and terms. This methodology, organize and visualize the tag cloud, making it easier to analyze relations between web

documents.

 Thus through the literature it is clear that many researchers, worked on tag cloud in different context. Project vocabulary

map presented in SPO show information only about the elements that are relevant to the high level abstraction of an ecosystem.

There are cases in which the application should support navigating at a lower level abstraction that enables to view the

vocabulary perspective inside a project’s in ecosystem. Here in this paper, an attempt has been done to analyze the vocabularies

for GRAPPA ecosystem and visually represent it as a tag cloud. The major advantage in visualizing the vocabulary dependencies

in ecosystem is to understand the way how the code fits into the ecosystem.

III. ANALYSING SOFTWARE ECOSYSTEM

 The GRAPPA open source code ecosystem is visually represented as a tag cloud.

Figure 1: visualization concepts of an ecosystem.

 Figure 1 represents the visualization concepts of an ecosystem. The various steps are discussed in detail in this section.

 The following steps are used to visually represent the various vocabularies in this ecosystem at low level.

1. Low level information such as non-keywords are extracted from the ecosystem.

2. The frequency count for each non-keyword are obtained and stored in the database.

3. The weights for each frequency count are estimated.

4. Project vocabulary tag cloud is represented.

5. Perform the tag operation on the tag cloud.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 85

A. Extraction of Non-Keyword

 GRAPPA [16] is an open source code graph package written in java. The package comprises of classes that implements graph

representation, presentation and layout services. It provides an application programming interface on top of which web-based

application that need to visualize information in terms of graphs such as process flows, business workflows or program

dependencies.

 The first hierarchy, whose root is the class DotGraph, contains the classes for graph definition (i.e., for defining graphs,

subgraphs, nodes, edges, and associating attributes with nodes and edges and associating attributes with nodes and edges).

DotGraph defines a graph as a set of DotElements, each of which is a node, an edge, or a subgraph. Each instance of DotElement

has set of attributes associated with it, such as shape, style, color, and so on. DotGraph also refers to the class DrawPane, whose

instances contain information about displayed of DotGraph.

 The second hierarchy, whose root is the abstract class DrawObject, includes classes for graph drawing. Class defines for

drawing 36 node shapes (Box, Circle, Ellipse,etc.) and several edge types are included in this hierarchy. Each instance of

DrawObject refers to a specific Graphic Context, which provides information for drawing an object on specific canvas.

 The third hierarchy, rooted at AppObject is a application-specific classes, and it constitutes the application program

interface for GRAPPA. An instance of AppObject refer to an instance of DotElement and has a reference to an instance of

DrawObject, depending on the value of the type attribute of the object (e.g. ,the node shape), the methods of the appropriate

subclass of DrawObject are called to draw the object on the client canvas.

 The abstraction of low level fine grained information of non-keywords such as class name, function name, data are

identified from the GRAPPA input source code. The open source code of GRAPPA contains 65 java files and 479 methods.

AppObject is one of the java file of GRAPPA. The non-keywords like class name, function name, data all are extracted from that

file. The various low level non-keywords that are extracted from AppObject includes AppObject, classesByTag, tagsByClass,

dotElement, getsetDrawDefaults, getReDrawFlag, getDrawObject, draw, getElement, getDrawObject. The extracted

vocabularies are stored in the database.

B. Weight Estimation of Grappa

In section 3.1 the low level abstraction of GRAPPA non-keywords that frequently occurred in the java file AppObject.java has

been extracted. Check the reputation of the extracted non-keywords in other java files in GRAPPA . When the same non-keyword

is found then the count will be incremented automatically in the data base. Table 1 shows the frequency count of the non-

keyword in the file AppObject.java in GRAPPA.

 For example, ‘tagByClass’ non-keyword exists only one time in AppObject.java but it is repeated 3 times in other files of

GRAPPA ecosystem. In GRAPPA, ‘copy’ is a non-keyword that occurs in many files which has the maximum frequency count of

130. This gives a clear picture regarding the usage of non-keyword in a particular project.

Table1: Weight estimation of the file AppObject.java in GRAPPA.

To optimize the frequency count for various non-keywords, weight need to be estimated. The weight of the non-keyword can be

estimated using the formula [17] given below.

Weight=maxPercent + ((max-(max-(count-min)))*(maxPercent-minPercent)/(max-min))

maxPercent = max/total number of files. minPercent = min/total number of files.

Ecosystem : GRAPPA

File name : AppObject.java

non-keywords frequency

count

weight

AppObject 3 2.9059

classesByTag 3 2.9059

tagsByClass 4 3.5762

dotElement 17 16.7589

getsetDrawDefaults 14 13.7629

getReDrawFlag 6 5.4038

getDrawObject 30 28.5762

Draw 15 13.9234

getElement 4 3.5762

getDrawObject 5 4.4038

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 86

In the formula, where max denotes the maximum frequency count in GRAPPA , min denotes the minimum frequency count in

GRAPPA, count denotes the value of the frequency count of this non-keyword. In table 1 third column shows the weight

estimation of the file AppObject. Java in GRAPPA. For example , ‘tagbyclass’ non-keyword has the value of maxpercent=

0.4615; minpercent=0.0153; max=30; min=1; count=3 from this the weight is calculatedas 4.5762.

IV.TAG CLOUD
The GRAPPA open source code is given as the input to the tag cloud tool. This tool will analyze each and every word of the

input code and extract the non-keywords such as class name’s, methods and data’s. The frequency count is calculated for each

and every non-keyword using the tool. Based on the frequency count weight is calculated. According to the weight, vocabularies

or non-keywords are visualized as a Tag cloud. Figure 2 shows the number of classes, number of methods, number of data and

number of lines in a GRAPPA ecosystem. The non-keywords like class name, function name and data are extracted as shown in

figure 2. Whenever the same non-keyword is identified, frequency count is automatically incremented in the database. Then the

weight is estimated according to the frequency count.

Figure 2: Non-keyword extraction

The Tag cloud tool gives the general overview of the vocabularies used in the source code of the project. Figure 3 shows the Tag

cloud of GRAPPA ecosystem. This tool gives the information to the developer who wants to obtain a general overview of the

domain language of a project. The tag cloud tool analyses and visualizes some of the most important vocabularies used in the

GRAPPA ecosystem project are ‘copy’, ‘graph’, ‘subgraph’.

Figure 3: Tag Cloud of GRAPPA ecosystem.

V. TAG OPERATIONS
A tag operation will displays the list of java files of the particular non-keyword. The tag operation will display in which file it is

used as a class name, function name and data. By this the user can differentiate the each occurrence of the non-keywords that is

present in a particular java file. The tag operation aids the simplicity for analyzing a large software ecosystem. In Figure 3 the

non-keywords are extracted and the file location of every non-keyword is visualized and the source code is displayed. For

example ‘handleAttribute’ has occurred in the list of java files AppObject.java, DrawEdge.java, DrawNode.java,

DrawObject.java, DrawSubgraph.java and Table.java. Then the source code of the AppObject.java is displayed.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 87

Figure 3: Tag operation – ‘File Retrieval’

VI. CONCLUSION AND FUTURE WORK
In this paper, visualization of GRAPPA ecosystem has been done for low level fine grained non-keyword. This visualization has

been performed with extraction of non-keywords, frequency count, and weight calculation. To achieve this GRAPPA open source

code is used and the number of class files,methods, data and number of lines are extracted. The low level non-keywords are

extracted and stored in data base. The frequency count has been calculated for all the non-keywords. Weight is estimated

according to the frequency count. The new developer can easily find about the project based on low level non-keywords which

has been obtained in the tag cloud. This will help to get the non-keyword terms present in the large complex software. Here, in

this work, the non-keywords is restricted to class name, methods, and preliminary data but it can further expanded. Apart from

this dependency graph can be plotted based on the dependencies between classes, methods and data.

REFERENCE
[1] D. Gracanin, K. Matkovic, M. Eltoweissy, (2005),“Software visualization”, Springer-Verlag, pp. 221-230.

[2] M. Lungu, M. Lanza , T. Girba , R. Robbes, (2010), “ The Small Project Observatory: Visualizing software ecosystems”,

pp. 264-275.

[3] M.Lungu, T. Girba,(2007), “ A small observatory for super-repositories ”, in : IWPSE'07: Proceedings of the 9th

International Workshop on the Principles of Software Evolution, pp.106-109.

[4] S. Eick, J. Steffen, (1992), “ Seesoft a tool for visualizing line oriented software statistics”, IEEE Transactions on Software

Engineering, pp.957-968.

[5] O. Nierstrasz, S. Ducasse, T. P. Girba. (2005), “The story of moose: An agile reengineering environment”, SIGSOFT

Software Engineering, pp. 1-10.

[6] M.Lungu, (2008), “Towards Reverse Engineering Software Ecosystem”, ICSM , pp.428-430.

[7] M. Lungu and M. Lanza, (2006), “Softwarenaut: cutting edge visualization”, Proceedings of . ACM symposium on

Software visualization,.pp.179-180.

[8] M. Lungu, M. Lanza, (2010), “ The Small Project Observatory - A tool for Reverse Engineering Software

Ecosystems”.pp.289-292.

[9] J. I. Maletic and A. Marcus, (2000), “Using latent semantic analysis to identify similarities in source code to support

program understanding”, Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI’00), pp.1-46.

[10] A. Marcus and J. Maletic, (2001), “Identification of high-level concept clones in source code”, Proceedings of the 25th

International Conference on Software Engineering (ICSE’03),pp.1-30.

[11] A. Marcus and J. I. Maletic,(2003), “Recovering documentation-to-source-code traceability links using latent semantic

indexing”,

 Proceedings of the 25th International Conference on Software Engineering, pp.125-135.

[12] V. R. Andrian Marcus1, A. Sergeyevl and J. I. Maletic, (2004), “An information retrieval approach to concept location in

source code”, Proceedings of the 11th Working Conference on Reverse Engineering, pp.1-10.

[13] M. M. S. Kawaguchi, P. K. Garg and K. I. Mudablue, (2004), “An automatic categorization system for open source

repositories”, Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC.04), pp.1-10.

[14] C. Seifert, B. Kump, M.l Granitzer, (2008), “On the beauty and usability of tag clouds”, 12th International Conference

Information Visualization, pp. 17-25.

[15] A. Zubiaga, A. P. Garcla-Plaza, V. Fresno, R. Martinez, (2009), “Content-based clustering for Tag Clould Visualization”,

Advances in social Network Analysis and Mining, pp. 316-319.

[16] W. Lee, N. Barghouti, and J. Mocenigo, (1997), “GRAPPA: A graph package in Java”, Proceeding on Symposium Graph

Drawing, pp.1-8.

[17] http://blog.jeremymartin.name/2008/03/efficient-tag-cloud-algorithm.html

http://blog.jeremymartin.name/2008/03/efficient-tag-cloud-algorithm.html

