
International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 17

Linux Device Driver Coding for Pseudo Device
Murali. B. A

Department of Electrical and Electronics Engineering, Anna University

Abstract
Device driver is the most important software of operating system to interact with hardware devices. As an essential part of

operating system, device drivers must be reliable and efficient, because wrong operation can make a fatal system error and

hardware performance depends on the device driver. Therefore, it must be developed carefully. In this paper, I present Linux

Device Driver coding for Pseudo Device. The main goal of our work is reliable coding for Pseudo Device to improve quality.

Introduction
Device Drivers: The device drivers can be seen as a software layer that lies between the applications and the actual device.

Device drivers are integral components of operating systems. The computational workloads imposed by device drivers tend to be

aperiodic and unpredictable because they are triggered in response to events that occur in the device, and may arbitrarily block or

preempt other time-critical tasks. Linux facilitates us to insert a piece of code along with the running modules into the kernel at

run time which is called as Loadable Kernel Module (LKM). In order to develop Linux Device Drivers, it is necessary to have

an understanding of the following:

C Programming: Some in-depth knowledge of C Programming is needed, like pointer usage ,bit manipulating functions, and so on.

Microprocessor Programming: It is necessary to know how microcomputers work internally: Memory Addressing Interrupts, and so on.

All of these concepts should be familiar to an assembly programmer.

Literature Survey:

S.N

o.

Title Remarks

1 A. Rubini, Linux

Device Drivers,

O'Reilly &

Associates,

Sebastopol, Calif.,

1998

Learnt about basics of

Linux Device driver

Programming and syntax

for Scull (Simple

Character Utility for

Loadable Localities)

Device.

2 T. Burke, M.A.

Parenti, A. Wojtas.

Writing Device

 Drivers: Tutorial

and Reference,

Digital Press,

Boston,1995

Learnt about Data

Structure for Pseudo

Device Driver.

3 Linux Operating

System

Documentation,

http://www.sunsite.

unc.edu/pub/Linux

Learnt about Linux

Operating System

Documentation of File

Systems in Linux

4 Robert Love, Linux

Kernel

Development,

Second Edition,

2005

Learnt about basic

Commands in Linux for

Device Driver.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 18

5 A. Rubini,

“Dynamic Kernels:

Modularize Device

Drivers,” Linux J.,

Issue 23, Mar. 1996,

http://www.ssc.com

/lj/issue23/1219.htm

l.

Learnt about inserting

loadable Kernel Modules

(LKM) dynamically in

Linux OS.

6 ELF specifications

be downloaded

from

ftp://sunsite.unc.

edu/pub/Linux/GCC

/ELF.doc.tar.gz.

Learnt about GNU C

Compiler (GCC) &

Executable and Link File

System.

7 Chen lijun,

"Understanding

Linux kernel source

code

deeply"[M],Beijing:

Posts & Telecom

Press. 2002.

Learnt about Kernel

source code for Device

Driver.

8 Y. Zhou, M.S. Li,

"Research and

implementing of

real-time support of

Linux kernel",

Journal of computer

research and

development,Vo1.3

9, No. 4, April

2002.

Learnt about importance

of Linux OS

in Real-time systems.

9 Linux Kernel

http://www.kernel.o

rg

Downloaded source code

for Linux kernel

10 P. Mantegazza, E.

Bianchi, L. Dozio,

S. Papachar-

alambous, RTAI:

Real Time

Application

Interface,

Linux Journal, April

2000.

Learnt about Application

Interfaces

availability for Linux

Device Driver

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 19

Device Drivers:
A device driver is the set of kernel routines that makes a hardware device respond to the programming interface defined by the

canonical set of VFS functions (open, read, lseek, ioctl, and so forth) that control a device. The actual implementation of all these

functions is delegated to the device driver. Because each device has a different I/O controller, and thus different commands and

different state information, most I/O devices have their own drivers.

The three classes of devices are:

Character Devices:

A character (char) device is one that can be accessed as a stream of bytes (like a file); a char driver is in charge of implementing

this behavior. Such a driver usually implements at least the open, close, read, and write system calls. Char devices are accessed

by means of filesystem nodes, such as /dev/tty1 and /dev/lp0. The only relevant difference between a char device and a regular

file is that you can always move back and forth in the regular file, whereas most char devices are just data channels, which you

can only access sequentially.

Block Devices:

Like char devices, block devices are accessed by filesystem nodes in the /dev directory. A block device is a device (e.g., a disk)

that can host a filesystem. Linux allows the application to read and write a block device like a char device—it permits the

transfer of any number of bytes at a time. As a result, block and char devices differ only in the way data is managed internally by

the kernel, and thus in the kernel/driver software interface.

Network Devices:

Any network transaction is made through an interface, that is, a device that is able to exchange data with other hosts. A network

interface is in charge of sending and receiving data packets, driven by the network subsystem of the kernel, without knowing

how individual transactions map to the actual packets being transmitted. Network devices are, usually, designed around the

transmission and receipt of packets. A network driver knows nothing about individual connections, it only handles packets.

Communication between the kernel and a network device driver is completely different from that used with char and block

drivers. Instead of read and write, the kernel calls functions related to packet transmission.

Loading & Unloading Device Drivers:

Most modern kernels can dynamically load & unload some portions of the kernel code, which are usually called modules. These

modules can be linked on demand.

To load & unload device drivers dynamically in the kernel, they are built in form of modules. Modules are stored in the

file system as ELF object files. A user can link a module into the running kernel by executing the insmod utility. A module can

be un-linked from kernel by executing the rmmod utility.

Kernel modules usually provide two functions:

An initialization function is called if the module is loaded. It usually scans for hardware, registers functions that are called later

and allocates memory. Such functions can be callback functions at different subsystems like the USB subsystem or interrupt

handlers. This function is required to load the kernel module.

A clean-up function usually reverts all the steps done in the initialization function in reverse order. It is possible for a module to

provide only the initialization function; this means that it is impossible to unload the module.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 20

Software Requirements & Specifications:

Description:

The project is the implementation of device driver for SCULL(Simple Character Utility for Loadable Localities) device using C

programming language.

Requirements Analysis:

1. What are the complexities involved in making the project?

The project involves the implementation of generic and efficient device driver. Drivers reside in a layer of kernel space just

above the Pseudo hardware i.e., Driver direct communicate with Pseudo hardware and system space, if something goes wrong

with in programming it can crash the system and hardware also.

Functional Requirements:

System Requirements:

• Pentium machine or above.

• Linux-2.6.32.5 Environment

• 64 MB of RAM.

System Design And Source Code:

/* SAMPLE CODE */

#include<linux/init.h>

#include<linux/module.h>

MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void)

{

 printk(KERN_ALERT "HELLO, WORLD \n");

return 0;

}

static void hello_exit(void)

{

 printk(KERN_ALERT "GOOD BYE WORLD \n");

}

module_init(hello_init);

module_exit(hello_exit);

/* DEVICE REGISTRATION */

#include<linux/init.h>

#include<linux/module.h>

#include<linux/types.h>

#include<linux/fs.h>

#include<linux/kdev_t.h>

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 21

#include<linux/moduleparam.h>

#include<linux/cdev.h>

MODULE_LICENSE("Dual BSD/GPL");

static int scull_major=0;

static int scull_minor = 0;

static int scull_result=0;

static int scull_res=0;

static int scull_num_dev=0;

dev_t dev;

module_param(scull_major,int, S_IRUGO);

module_param(scull_num_dev,int,S_IRUGO);

struct file_operations scull_fops

={

 .owner= THIS_MODULE,

 //.open = scull_open,

 //.read = scull_read,

 //.write = scull_write,

 //.release = scull_release,

};

struct scull_dev

{

 struct cdev cdev;

};

struct scull_dev scull_devices;

static void scull_setup_cdev(struct scull_dev *dev,int index)

{

 int err, devno = MKDEV(scull_major, scull_minor + index);

 cdev_init(&dev->cdev, &scull_fops);

 dev->cdev.owner = THIS_MODULE;

 dev->cdev.ops = &scull_fops;

 err = cdev_add (&dev->cdev, devno,1)

 if(err)

 printk(KERN_NOTICE "Error %d adding scull%d", err, index);

 else

 printk(KERN_ALERT "The number with device number %d is initialized\n",index);

}

static int scull_init(void)

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 22

{

 dev=MKDEV(scull_major,scull_minor);

 scull_result = register_chrdev_region(dev,1,"hello");

 if(scull_result < 0)

 scull_res = alloc_chrdev_region(&dev,0,1,"hello");

 scull_major = MAJOR(dev);

 printk("major number required is allocate %d",scull_major);

 scull_setup_cdev(&scull_devices, 0);

 return 0;

}

static void scull_exit(void)

{

 cdev_del(&scull_devices.cdev);

 printk(KERN_ALERT "Device deleted\n");

 unregister_chrdev_region(dev,1);

 printk(KERN_ALERT "Device unregistered\n");

 printk("\nModule unloaded\n");

}

 module_init(scull_init);

 module_exit(scull_exit);

/* KERNEL MODULE LOADING AND UNLOADING */

/* STATIC AND DYNAMIC ALLOCATION OF MAJOR NUMBERS */

#include<linux/init.h>

#include<linux/module.h>

#include<linux/types.h>

#include<linux/fs.h>

#include<linux/kdev_t.h>

#include<linux/moduleparam.h>

MODULE_LICENSE("Dual BSD/GPL");

static int major=0;

static int minor = 0;

static int result=0;

static int res=0;

dev_t dev;

module_param(major,int, S_IRUGO);

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 23

static int static1_init(void)

{

 dev=MKDEV(major,minor);

 result = register_chrdev_region(dev,1,"hello");

 if(result < 0)

 //result = alloc_chrdev_region(&dev,0,1,"hello") //printk(KERN_ALERT "required major number is not

available\n");

 res = alloc_chrdev_region(&dev,0,1,"hello");

 major = MAJOR(dev);

 printk("major number required is allocate %d",major);

 return 0;

}

static void static1_exit(void)

{

 unregister_chrdev_region(dev, 1);

}

module_init(static1_init);

module_exit(static1_exit);

/* ARRAY OF SCULL DEVICES INSERTION */

#include<linux/init.h>

#include<linux/module.h>

#include<linux/types.h>

#include<linux/fs.h>

#include<linux/kdev_t.h>

#include<linux/moduleparam.h>

#include<linux/cdev.h>

MODULE_LICENSE("Dual BSD/GPL");

static int scull_major=0;

static int scull_minor = 0;

static int scull_result=0;

static int scull_res=0;

static int scull_num_dev=0;

static int i;

static dev_t dev;

module_param(scull_major,int, S_IRUGO);

module_param(scull_num_dev,int,S_IRUGO);

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 24

struct file_operations scull_fops

{

 .owner= THIS_MODULE,

 .open = scull_open,

 .read = scull_read,

 .write = scull_write,

 .release = scull_release,

};

struct scull_dev

{

 struct cdev cdev;

};

 struct scull_dev scull_devices[5];

static void scull_setup_cdev(struct scull_dev *dev,int index)

{

 int err, devno = MKDEV(scull_major, scull_minor + index);

 cdev_init(&dev->cdev, &scull_fops);

 dev->cdev.owner = THIS_MODULE;

 dev->cdev.ops = &scull_fops;

 err = cdev_add (&dev->cdev, devno,1);

 if(err)

 printk(KERN_NOTICE "Error %d adding scull%d", err, index);

 else

 printk(KERN_ALERT "The number with device number %d is initialized\n",index);

}

static int scull_init(void)

{

 dev=MKDEV(scull_major,scull_minor);

 scull_result = register_chrdev_region(dev,1,"hello");

 if(scull_result < 0)

 scull_res = alloc_chrdev_region(&dev,0,1,"hello");

 scull_major = MAJOR(dev);

 printk("major number required is allocate %d",scull_major);

for(i=0;i<scull_num_dev;i++)

 scull_setup_cdev(&scull_devices[i], i);

 return 0;

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 25

}

static void scull_exit(void)

{

 for(i=0;i>scull_num_dev;i++)

 {

 cdev_del(&scull_devices[i].cdev);

 printk("Device no : %d deleted\n",i);

 }

 unregister_chrdev_region(dev,1);

 printk("\nModule unloaded\n");

}

 module_init(scull_init);

 module_exit(scull_exit);

/* API LEVEL CODE FILE OPEN */

#include<stdio.h>

#include<stdlib.h>

main()

{

 int f;

 f=open("./text","r");

 if(f<0)

 {

 printf("module busy not inserted\n");

 exit(0);

 }

 printf("Module inserted");

 close(f);

 }

/* API LEVEL CODE FILE READ */

#include<stdio.h>

#include<stdlib.h>

#define MAX 1024

main()

{

 int f,n;

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 26

 char buf[MAX];

 f=open("./scull","r");

if(f<0)

 {

 printf("module busy not inserted\n");

 exit(0);

 }

 printf("Module inserted\n");

 n=read(f,buf,MAX);

if(n<0)

 {

 printf("Reading Error");

 exit(0);

 }

 printf("Data Read : %s\n",buf);

 close(f);

}

/* API LEVEL CODE FILE WRITE */

#include<stdio.h>

#include<stdlib.h>

#define MAX 1024

main()

{

 int f1,n1=0;

 char buf[MAX];

 f1=open("./scull","r");

 if(f1<0)

 {

 printf("Module is busy,Not inserted");

 exit(0);

 }

 printf("Module is inserted");

 printf("\nEnter the data:\n");

 scanf("%s",buf);

 n1=write(f1,buf,5);

 if(n1<0)

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 27

 {

 printf("\nWriting error\n");

 exit(0);

 }

 printf("\nData Written :%s\n",buf);

 close(f1);

}

Implementation :

 Layout of the Driver

As this driver is to be added to the running kernel dynamically, it has to be designed in form of a module. After compilation a

kernel object will be created (.ko file) which can be added using insmod utility.

Insmod:

 In this routine, the driver structure is allocated using usb_dev..

- Initialization of the driver is done here.

- List of USB devices is scanned. (using usb_get_device)

- If the desired device is found, it is added to the driver’s list of devices.

- Then the device is enabled.

- IO port is allocated for the specified device (using usb_request_regions)

- Required information is read from configuration space of USB device and then stored into the private object of the

device.

- Here we perform three steps for initialization of a module:

 They are ,

1.Sys_create_module():

 The functionality of this system call is that it requests to allocate a memory in the kernel space using vmalloc().

 If the memory is not available it returns a status of -1.

 If the memory is available it returns a status of 0.

2.get_kern_syms():

- The functionality of this function is that it resolves all the variables,symbols and functions inserted into the symbol

table with respect to kernel,it gets all declarations and definitions.

3.module_init():

 - The functionality of this is like it initializes

 The module.

rmmod :

 This routine is the counterpart of the init routine.

- Whatever allocation was done in init is de-allocated here.

- First driver’s every device structure is removed from the memory.

- Then the driver structure is de-allocated.

 For removing a module we use two functions .They are:

- 1.Sys_delete_module():

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 28

 The functionality of this module is like it checks whether the module is in use or not.

- The other thing is like dereferencing the symbols,variables,definitions declared in symbol table.

- 2.module_cleanup(): The functionality of this is to free the memory.

Let us consider we are having one folder named hello in which we have tho following files

1 hello.c ------- API

2 Makefile

3 scull.c ------- scull with major and minor numbers

STEPS TO INSERT A MODULE:

1 make

 it will create .ko,.o files

2 insmod scull.ko major_num=252 num=2(here num represents the number of minor numbers)

if 252 is busy , dynamically it will allocate the major number fot the module

3 lsmod | head 5

 to check the module was inserted ot not

4 dmesg | tail -10

to get the major and minor numbers for the inserted module

5 compile the API

 gcc -o hello hello.c

 we will get hello binary

6 We have to create the device special files

 mknod scull0 c major_num minor_num

 example: mknod scull0 c 252 0(for 1st device)

depending on the minor numbers we have to create those many device special files

7 Now run the API binary means

 ./hello

 it will ask the path of device special file . Give the path of scull0

Steps To Remove A Module:

8 remove the module

 rmmod scull.ko

Conclusions
The project proposal was aimed to develop a Linux based Device Driver Coding for “Simple Character Utility for Loadable

Localities(Scull)” using C language .

References
1. A. Rubini, Linux Device Drivers, O'Reilly & Associates,Sebastopol, Calif., 1998

2. T. Burke, M.A. Parenti, A. Wojtas. Writing Device Drivers: Tutorial and Reference, Digital Press, Boston,1995.

3. Linux Operating System Documentation,http://www.sunsite.unc.edu/pub/Linux

4. Robert Love, Linux Kernel Development, Second Edition, 2005

5. A. Rubini, “Dynamic Kernels: Modularize Device Drivers,” Linux J.,Issue 23, Mar. 1996,

http://www.ssc.com/lj/issue23/1219.html.

http://www.sunsite.unc.edu/pub/Linux
http://www.ssc.com/lj/issue23/1219.html

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 29

6. Y. Zhou, M.S. Li, "Research and implementing of real-time support of Linux kernel", Journal of computer research and

development,Vo1.39, No. 4, April 2002.

7. P. Mantegazza, E. Bianchi, L. Dozio, S. Papachar-alambous, RTAI: Real Time Application Interface,Linux Journal, April

2000.

8. Chen lijun, "Understanding Linux kernel source code deeply"[M],Beijing: Posts & Telecom Press. 2002.

9 Linux Kernel http://www.kernel.org.

10. ELF specifications be downloaded from ftp://sunsite.unc.edu/pub/Linux/GCC/ELF.doc.tar.gz.

http://www.kernel.org/

