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Abstract 
At present, “Smart Grid” emerged to be 

one of the best advanced energy supply chain. 

This paper looks into the security system of 

Smart Grid via Smart Planet system. The scope 

focused onto information security criteria that 

impacts consumer trust and satisfaction. The 

importance of information security criteria is the 

main aspect perceived to impact customer trust 

towards the entire smart grid system. On one 

hand, it also focused on the selection of the model 

in developing information security criteria on 

smart grid. 

In the power grid, efficient coordination 

among electricity generation, transmission, 

distribution and consumption processes call for 

integration of the advances in Information and 

Communication Technologies (ICT) to the 

physical components of the grid. The need for 

coordination and control becomes even more 

pronounced when the additional loads of the 

Plug- In Hybrid Electrical Vehicles (PHEVs) are 

considered. PHEVs are anticipated to be widely 

adopted in the following years, and this will 

increase the load on the power grid since the 

batteries of the PHEVs will be charged mostly 

from the grid supplied power. In this case, 

avoiding mismatch between generation and 

consumption is one aspect of the problem, 

whereas to avoid overloading the distribution 

system components, e.g. transformers, are 

another equally important challenge. In this 

paper, we consider an architecture where the 

status of the grid is monitored by the utility and 

translated into an amount of provisioned energy 

for each distribution system serviced by a 

substation. The substation employs an admission 

control mechanism for the PHEV charge 

demands based on the provisioned energy 

amount. We provide the theoretical analysis of 

this admission control scheme by calculating the 

blocking probability of the PHEV demands. We 

also propose a mechanism to reduce the load 

without increasing the blocking probability. We 

introduce an activity factor in the model and 

show that it can be used to reduce the load. We 

show by theoretical analysis and simulations that 

our PHEV admission control mechanism 

decreases the overall load in the system, and 

hence increases the resilience of the smart grid. 

Meanwhile, we show that load reduction can be 

implemented without increasing the blocking  

 

 

probability, thus customer satisfaction is not 

degraded. 
 

Keywords- Advanced metering infrastructure 

(AMI),  communication technologies, quality-of-
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I.  INTRODUCTION- DESIGN 

METHODOLOGY IN A FEEDBACK 

CONTROL ARCHITECTURE  
Our rule-based controller design 

methodology with a feedback control architecture is 

illustrated in Fig. 1. The model of the system to be 

controlled (rule-based power system model in this 

case) is represented by the block p(・ ) in Fig. 1. The 

rulebased controller h(・ ) is a feedback controller 

that acts on the load forecast l(t), current 

environmental factors z(t) such as the water level of 

the hydro generator and weather prediction, and the 

error signals e(t), which are the difference between 

the actual load yactual(t) at time t and the output 

load yout(t) from the power system model for time t 

(yactual(t) and yout(t) are in the same domain). The 

rule-based controller consists of transition rules that 

map the inputs l(t), z(t) and e(t) to the output u(t) 

that then generates the power supply control 

schedule. The vector u(t) represents the input to the 

power system model, or control action (e.g. to turn 

on a generator) of the power system at time t. We 

assume all the rules used in the power system model 

and the controller are written in Horn clauses. When 

a set of rules written in Horn clauses are sound and 

complete, a trim and minimal finite state Moore 

machine exists for the rule-based system according 

to the Theorem in [7] as follows:  

 

Theorem 1: If a finite set of rules written in 

Horn clauses is sound and complete, then there 

exists a finite automaton that is trim and minimal. 

 

The rule-based controller can then be 

represented as a 6- tuple Moore machine M=(Q, Σ, 

Υ, δ, Λ, q0), where Q is a set of states {q}, Σ is the 

input alphabet (a finite, non-empty set of symbols 

{σ}), Υ is the set of output alphabet (a finite, 

nonempty set of symbols {υ}), δ is the state-

transition function, that is δ : Q × Σ → Q, Λ is the 

output function, that is Λ : Q → Υ, and q0 is an 

initial state, an element of Q. We define each 

component of the Moore machine for the example 

rule-based controller in Section 3. Suppose we want 
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to minimize the cost of the difference between the 

actual load yactual(t) and the output load yout(t) 

from the power system model, and the cost of the 

control actions, which is a common criterion in 

practice. An optimal control problem can be 

formulated to solve for the set of operational rules 

that constitute the rule-based controller h(・ ) with 

given p( ・ ), l(t), z(t) and yactual(t). A detailed 

formulation of the optimal control problem with a 

numerical example is given in Section 3. 

 

A. Petri Net Modeling 

The proposed modeling method includes 

two steps: first, the overall performance and cost of 

each IT infrastructure is determined based on scored 

performance and cost FoMs; then, it is determined 

that how much the suggested IT infrastructures 

satisfy and adapt to the given policy. Fig. 8 shows 

the designed Petri net for determining each 

alternative’s performance based on its PFoMs 

(CAIDI, ASUI, and Rel.). As mentioned earlier, to 

be able to apply scored FoMs to the net as inputs, 

they should be quantized. In our application, there 

are three levels of quantization including Unusable 

(U), Moderate (M), and Excellent (E). These 

quantized scored FoMs form initial marking in a 

way that Unusable, Moderate, and Excellent values 

are modeled by one, two, and three number of 

tokens in corresponding places, respectively. The 

output of the net is the overall performance of the 

alternative which can be one of the three values of 

Poor, Moderate, or Excellent corresponding to 

places Pa, Ma, and Ea, respectively. As shown, we 

used a hierarchical algorithm in our modeling 

method, i.e. the input tokens in initial marking 

propagate in the net from left to right filling output 

places hierarchically until the net reaches its dead-

end. To illustrate, the proposed net is the 

implementation of the look-up table of Table I 

extracted from experts’ judgments; for instance, 

when the IT infrastructure in Unusable regarding 

one (or more) PFoM, disregarding values of other 

PFoMs, the overall performance of alternative is 

Poor. The modeling method is in a way that when 

the net reaches its dead-end, there is one token in 

only one of the output places Pa, Ma, or Ea 

determining the ovarall performance of alternative. 

We can simply say, using experts’ judgments, we 

designed a Petri net that combines the scored PFoMs 

and gives the overall performance of the alternatives. 

 

Fig. 8. Petri net model for determining 

overall performance of IT Infrastructure; P, M, and 

E represent Poor, Moderate, and Excellent, 

respectively; the index of a stands for Alternative 

performance of system. The same procedure stays 

for determining the overall cost of each alternative 

based on its scored CFoMs (EPC and O&M); except 

for overall cost, since the effects of EPC and O&M 

are significantly different in high values for different 

possession and payment policies, the output values 

for overall cost of each alternative is determined by 

two letters which correspond to EPC and O&M, 

respectively. Note that quantization levels for 

CFoMs are the same as that of performance FoMs, 

that is, Unusable, Moderate, and Excellent. 

Therefore, the overall cost of each alternative is U, 

MM, ME, EM, or EE (for Unusable values of 

CFoMs, we used only one output). Fig. 9 shows the 

designed Petri net for determining the overall cost of 

alternatives. Fig. 9. Petri net model for determining 

the cost of IT Infrastructure; U, M, and E represent 

Unusable, Moderate, and Excellent, respectively. 

 

Now that we have the overall performance 

and cost characteristics of suggested IT 

infrastructures, we can compare each of them with 

the characteristics of the given policies. To do so, 

first, we consider the performance of the 

alternatives. Fig. 10 shows the proposed Petri net 

model that determines how much each alternative 

satisfies the wanted performance in given policy. As 

shown, based on the cost performance trend, three 

levels are considered for wanted performance, 

namely, Not Considered (NC) for cost-oriented 

policy, Moderate (M) for cost-performance 

equilibrium policy, and Excellent (E) for 

performance-oriented policy. In modeling method, 

one place is considered for each of these values; 

thus, based on what value is wanted in the given 

policy, the corresponding place gets one token and 

the other two places remain empty in initial marking. 

Outputs of the net of Fig. 9 (Pa, Ma, and Ea) are also 

inputs of this net. Using the rule that the suggested 

IT infrastructure should satisfy the wanted 

performance given by policy, we designed the Petri 

net of Fig. 9 for determining the level of satisfaction 

of given policy regarding performance 

characteristics by each IT infrastructure (for 

example, an IT infrastructure with Excellent 

performance satisfies all levels of wanted 

performance in an Excellent way). As shown, three 

levels of satisfaction are considered, Poor (P), 

Moderate (M), and Excellent (E), each one modeled 

by a place in the net. Fig. 10. Petri net model for 

applying policy regarding performance; NC, M, and 

E represent Not Considered, Moderate, and 

Excellent, respectively; the index of p stands for 

Policy. Fig. 11 shows the designed Petri net that 

determines the level of adaptation of each alternative 

with the type of possession given in policy. Left-

hand side places are the outputs of the net of Fig. 10 

showing the cost characteristics of the alternative, 

and upper places are considered for the possession 

policy, i.e. FP, MP, and LP correspond to full 

possession, moderate possession, and low 

possession, respectively (possession policy 

determines which 

 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 863 

 
      

 

II. TECHNICAL OPPORTUNITIES AND 

CHALLENGES 
The projected application of large-scale 

smart grid may be monumental. Various types of 

data can be collected to support generation, 

transmission, and distribution system modeling 

efforts. Collected data could be tagged with 

metadata and annotations to foster data sharing. 

Metadata consist of additional information that 

relates, for example, to the ownership, interpretation, 

and use of the data. Such information could help 

data use, security, and validation. Annotations to 

data can be made to assist in data searching and 

characterization to facilitate collaboration and 

workflow. Such collaborative data tagging is 

becoming increasingly common in science and 

engineering collaboration environments and 

provides a baseline for future energy system 

applications. A broad range of data that could 

potentially be collected includes (1) network 

topology and system component connectivity, (2) 

equipment parameters and operating status, and (3) 

anomalous network conditions caused by either 

scheduled or nonscheduled events. Once data is 

successfully collected, an additional set of data 

access concerns includes (1) data management, (2) 

dispute resolution of data sets, (3) data access 

challenges, (4) regard to proprietary data protection, 

(5) data integration quality challenges, and (6) data 

security and protection. In a similar manner, the 

distribution of simulation results and reports that are 

derived from these data sources needs to be carefully 

controlled, for they could convey sensitive 

information. This aspect of derived data 

management focuses on these sensitivities by 

identifying additional access, integrity, validation 

and version control, and security and protection 

concerns. In a large-scale application, data could be 

collected to characterize the status of available 

intermittent power sources such as wind and solar, 

plug-in hybrid electric vehicles, and new demand 

patterns resulting from consumers using smart grid 

technologies to make purchasing and conservation 

decisions. These diverse applications expand the 

number of data collection points well beyond the 

current number monitored in transmission and 

distribution grids. As a result, centrally or distributed 

data management practices potentially become a 

substantial task that requires further examination and 

research. As applications in system planning and 

operations incorporate these new system parameters, 

tools in the operations environment could take on 

more automated response as operators become 

comfortable with new automated capabilities. 

Because modeling algorithms and results can be 

improved when additional or better data are 

available, the motivation to implement smart grid 

data collection is elevated. However, barriers often 

exist that limit the availability, suitability, and 

unrestricted use of data. Although smart grid can 

simplify the gathering of such data, many other 

obstacles are still common and remain a focus of 

discussion. A key component required to resolve 

data integration and validation concerns may be 

handled by improved state estimation techniques. 

The challenges to the application of state estimation 

include more data points, more frequent data 

samples, and more potential data conflicts 

introduced both by multiple data sources and by an 

increase in the number of data points. Although 

ultimately mitigated using phase-shifting 

transformers, reactive power support equipment, 

new generation facilities, and transmission line 

enhancements or additions, additional data points 

and improved monitoring and simulation capabilities 

provide an opportunity to limit potential 

contingencies caused by loop flows while larger 

expansion projects are being assessed, proposed, and 

constructed. Improved tracking and situational 

awareness of network components provide 

fundamental data for more advanced analysis and 

visualization software to assist operator decision 

making. Such data improvements would also likely 

improve response to situations that could cause 

larger system consequences. For example, improved 

monitoring and tracking can expand data collection 

and foster the implementation of remedial action 

schemes (RASs). Improvements to RASs and other 

mitigation systems result in timely automatic 

response to further minimize undesirable system 

impacts caused by contingencies. Furthermore, 

traditional RAS applications generally operate on 

equipment located within a substation or a localized 

portion of a utility. RAS algorithms also often 

require manual equipment adjustments to improve 

performance and response. Because smart grid 

collects data across the entire network and provides 

access to data parameters and equipment controls, 

the potential for interregional RAS applications 

increases. Such an improvement in RAS scope is 

more likely to mitigate the negative effects caused 

by parallel flows, voltage operating violations, and 

contingencies that could cause large regional 

impacts. An additional benefit of large-scale 

monitoring is that system parameter modifications 

can be made at distant facilities that may best correct 

a problem with local impacts. Thus, the scope and 

comprehensiveness of RAS applications are 

expanded by smart grid. The coupling of improved 

data collection and advanced response applications 

further improves system mitigation measures and 

decreases adverse system responses like unnecessary 

load curtailments, voltage sensitivities, and other 

power quality concerns. For example, smart grid 

technologies can address transmission congestion 

issues through demand response and controllable 

load. However, along with considerable 

improvements in response capabilities comes an 

increase in computational and algorithmic 

challenges that identify additional development 
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opportunities. An influx of more data also has the 

potential to improve many aspects of system 

planning. For example, improved generation 

dispatch and line loading may be likely as dayahead 

forecasts are validated with current information from 

actual data points. In addition to the dispatch 

challenges of existing technologies, new challenges 

introduced by intermittent power sources, plug-in 

hybrid electric vehicles, 3 and dynamic customer 

demand patterns further increase the reliance on 

additional data to improve generation forecasts. An 

increase in the data collection of equipment 

parameters and operating status provides improved 

failure and maintenance information that can be used 

to refine equipment maintenance schedules. 

Equipment that is not in service affects the operation 

of other generators and transmission lines required 

to satisfy projected supply and demand schedules. 

Over committing generators has a large impact on 

system operating costs, so improved maintenance 

schedule estimation can have a significant impact on 

reducing utility costs. There are numerous software 

products to assist operators with monitoring and 

control tasks. Smart grid can expand the usefulness 

of these systems by increasing the number of 

represented local data points and by providing 

access to data that goes beyond the boundaries of the 

operating utility. While inclusion of more local data 

improves model results, inclusion of regional data 

supports the mitigation of regional contingencies 

that may have a significant local effect. These tools 

already assist operators; however, the capabilities of 

these tools may be potentially expanded. Increased 

data may also signify a challenge to software 

vendors as computational requirements increase as 

the number of data points and sampling rates 

increase. 

 

III. INTELLIGENCE AND CONTROL OF 

INDIVIDUAL NODES 
In this section we discuss concepts for 

creating the ―Intelligence‖ blocks which define the 

autonomous behaviours of the distributed 

component. The (previously centralised) intelligence 

for coordinating all the components of the substation 

is now distributed across these components. Instead 

of simply passing of all information to the next level 

of hierarchy, each component makes a decision by 

itself as to whether the available information is 

sufficient, and informs higher level about the results. 

The decision is made based on the information 

available; if the accessible data is not satisfactory to 

make a decision then the information is passed to 

higher levels and authority to decide is given to 

them. This decentralization empowering the low 

levels simplifies the decision making algorithms 

while giving more independence to the components 

and makes the system more flexible and more easily 

reconfigurable without considerable 

changes in the operating algorithms. At this stage of 

the research the following assumptions are made to 

simplify the collaborative algorithm. 

1. A sectionalising switch can only be connected to 

one downstream and one upstream sectionalising 

switch. 

2. A sectionalising switch can be connected to a 

single downstream tie switch. 

3. A tie switch can only be connected to two 

upstream sectionalising switches. 

4. An overcurrent relay can communicate with one 

downstream overcurrent relay. 

 

Primary equipment does not perform 

complex behaviour; it sets initial position, responds 

to requests from bay level LNs, and makes simple 

decisions based on the available information, letting 

the upper layer know what decision has been made 

instead of transmitting data over the bus. The bay 

level LNs are distributed and need to interact with 

their neighbours to analyse the situation and make a 

decision. They require more ―complex‖ intelligence. 

6 As mentioned previously, there are sectionalising 

switches and tie switches, which differ in their 

purpose in the scheme and as a result in their 

behaviour algorithms. The important difference is 

that sectionalising switches are used to isolate faults, 

whereas tie switches are used to find an alternative 

source of supply on request. There are two layers in 

the bay level. The layer of PIOC LNs locates the 

fault. LNs within this layer ―talk‖ to each other to 

determine the fault position, and provide this 

information to upper layer. The upper layer consists 

of CSWI LNs, which collaborate with each other, 

and supply tie switches with data necessary for 

alternative supply evaluation.  

 

A. CSWI Intelligence (sectionalising switch) 

CSWI has two modes of operation: normal 

state and fault state. When the section where a 

switch is located does not have fault the switch is 

operated in the normal state. This applies even if 

there is a fault in another part of distribution 

network; however the switch moves to the fault state 

if it is involved in the alternative supply restoration 

process (Figure 7). When the feeder that the switch 

belongs to has a fault, then the switch moves to the 

fault state. Figure 7 demonstrates the concept. 

Initially the CSWI is in the normal state. When 

PIOC replicates the LOCKOUT signal received 

from RREC to the connected CSWIs, those switches 

move to fault state; also when the tie switch has been 

commanded to restore supply. When the fault has 

been repaired, the substation is commanded to return 

to the pre-fault state. 

 

Figure 7. Algorithm defining CSWI intelligence 

 

In normal mode a sectionalising switch only 

collaborates with its upstream neighbour and the 
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downstream tie switch. By request of the tie switch, 

the upstream sectionalizing switches propagate a 

headroom request signal and pass down the 

calculated headroom value (calculated according to 

the method given in [1]). 

 

In fault mode a sectionalising switch only 

talks to its downstream neighbour and the tie switch. 

In this mode any action and events related to 

headroom calculation are ignored. The switch which 

has a fault on its section of the feeder will isolate the 

fault by opening the adjacent downstream switch 

and controlled switch, and inform the adjacent 

downstream switch that the fault is isolated. The 

switch that does not have a fault, after the fault has 

been isolated, will initiate a search for and restore 

from an alternative source of supply. 

 

B. CSWI Intelligence (tie switch) 

A tie switch collaborates with both 

upstream sectionalizing switches. One of the 

sectionalising switches sends a request for 

alternative supply and the tie switch ―negotiates‖ 

about supply restoration. The other sectionalising 

switch replies to enquiries about excess capacity. 

Based on this data the tie switch decides whether or 

not to ―offer‖ supply to the requesting sectionalising 

switch. 

 

C. PIOC Intelligence 

PIOC detects and locates the fault, provides 

related information to the corresponding CSWI, and 

propagates the LOCKOUT signal. It triggers 

PTRC.Op.general data if there is a fault on the 

feeder. If there is a permanent fault, RREC goes to 

lockout and sends the LOCKOUT signal to PIOC, 

which replicates the LOCKOUT signal to let the 

downstream switches know about permanent fault 

somewhere on the feeder and initiate fault location 

algorithm. It senses the current with defined 

frequency and applies predefined rules to detect the 

fault. If monitored current was within acceptable 

limits before supply was interrupted then there is no 

fault on its section of the feeder. If a fault is detected 

it provides this status information. It keeps the pre-

fault value of the current. It collaborates with the 

downstream PIOC, requesting fault status in order to 

locate the fault. Based on the data obtained it decides 

whether the fault is on its section or the section 

below. 

 

D. TCTR Intelligence 

The purpose of TCTR is to sample the current and 

provide the samples to PIOC. 

 

E. PTRC Intelligence 

PTRC sees that the Op.general has been triggered 

and issues a trip signal (Tr.general) to the 

corresponding switch controller. 

 

F. RREC Intelligence 

The OpOpn.general input of RREC is 

triggered by CSWI in case of a fault. This makes 

RREC move to ―fault‖ state, where it performs 

preconfigured behaviour. The behaviour is simply a 

timer; when it expires RREC tries to reclose XCBR. 

If the attempt fails, RREC goes to the lockout state. 

It is restored to normal state by the ―restore pre-fault 

state‖ command.  

 

IV. MODELING FRAMEWORK 
Traditionally, models created for 

optimization of systems are generally expressed as 

abstract mathematical models. These models are 

defined in standard mathematical lexicon. When a 

system is to be deployed, its model is realized as 

code segments or equation matrices or equation 

arrays based on solver being used for optimization. 

The dimensions of these matrices and cardinality of 

variables is usually defined at the time of 

deployment and is hard coded in code segments, 

matrix dimensions, etc. In comparison, for systems 

such as DAS, system dimensions at the time of 

deployment are meaningless . This is due to the fact 

that it can grow, as well as shrink over time. To 

handle such changes, a measure of self-aware 

modeling integrated with self-optimization is 

necessary to manage DAS. This selfaware 

optimization can leverage the change in dimensions 

of DAS at runtime to attain scalability and 

performance boost according to the runtime state of 

DAS. Various systems have been optimized through 

mathematical models. However, in all of the 

applications of mathematical techniques seen so far 

by the authors, the constraints and tuning parameters 

were known when the system was being 

implemented [5]. We have not observed any detailed 

work for engineering a system's model that exhibited 

variability in the size of their constraints and control 

features. Therefore in our modeling framework we 

have used the abstract mathematical models as a 

meta-model to create an on-demand, instantaneous 

model of system based on system statistics. In this 

section we define our modeling framework for 

constructing an instantaneous model of a system at 

runtime.  

 

A.  Structure of the Mathematical Meta-Model 

In practice mathematical models are 

developed and expressed as abstract models. 

Mathematical models represent a 1564 system in 

form of decision variables and constraints. Decision 

variables are the controlling parameters to change 

the system state where as constraints are the 

limitations of the system. Since in mathematics, a 

variable can take any numeric value, it is important 

that we specify the limits of our decision variables as 

well. To model a system, the control parameters and 

limitations of the system are analyzed. A system can 

be composed of many control parameters but usually 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 866 

 
      

 

there exist logical groupings with which these 

control parameters can be abstracted into a single 

entity or class. Usually this also means that similar 

constraints apply on each of the element of the 

grouping. It also means that a single abstract 

equation with appropriate quantifiers can suffice for 

containing the behavior of all the variables within a 

group. Since these are logical groupings and 

resemble a set like structure, we call these variable 

abstraction as ontologies of our system. Hence an 

ontology is a group of control parameters which 

have similar logical structure and are subjected to 

similar constraints. Like sets, ontologies can be 

grouped together to form more inclusive notation. 

Mathematically, this means that whereas two 

different logical groups of variables, or ontologies 

are subjected to their own constraints, it can also 

have a set of constraints that are applicable to both 

the groups. Hence our decision variables can be part 

of a multitude of ontologies. Here a subscript define 

the specific element within an ontology. We call 

these grouping of ontologies as an ontological class. 

Figure 1 describes the abstract model that we will 

discuss in detail here.  

 

Example: Model for a Smart Grid Application 

We take the example of modeling the usage 

of electrical devices in an electric grid. We divide 

our devices into ontologies according to their 

consumption profiles and time periods. Our task is to 

maximize the number of machines from each set 

which can be kept in "on" state for a particular 

period in an hour without violating the service-level 

guarantee. Here the number of machines to keep in 

"on" state in a particular time period is our tuning 

parameter or "decision variable". For each tuning 

parameter there are two ontologies. First there are 

different sets of machines. Each type is represented 

as a subscript i. The second attribute is of time, that 

is which time period does a specific decision 

variable represent. These types are represented as a 

subscript t. Hence i, and t represent two ontologies 

combined in a single decision variable Xi,t. The 

system in figure 1 is subjected to three classes of 

constraints. Each of these class is represented as a 

single abstract equation. Notice that equation 3 is 

only applicable to one ontology, the time t while the 

other two are subjected to both. For demonstration 

of our framework we will consider the example of 

equation 2 in detail. This equation constraints the 

system by enforcing a minimum service level. It 

states that for every time period t, the number of 

machines switched on in every machine class i 

should not be less than Ij3rd of the total number of 

machines in that class. During implementation these 

abstract models are expanded according to available 

system statistics. If our system had fixed machine 

classes, say 10 and 6 time periods (t) the abstract 

equation 2 would have been expanded to 60 

equations. Each of these 60 equations would have 

represented one specific (t, i) tuple. 

 

Mathematical models for systems which do 

not exhibit change in cardinality from abstract model 

to implemented model can be modeled effectively. 

That is, if we can enumerate at time of 

implementation or deployment as to how many 

machines we have and how many time segments we 

have, then generating an actual model of the system 

from abstract model is straight forward. However, if 

the cardinality cannot be evaluated at the time of 

implementation, then modeling becomes a difficult 

task. A naive modeling technique is to consider 

worst case scenario. For example, in the sample 

model above, we limit i, or device classes, to say 

1000 and then make a model for these many classes. 

For a grid level electric distribution network this 

solution is not feasible. First, the number of device 

classes cannot be predicted. There are new types of 

machines that are being added everyday and limiting 

this growth is not possible. Second, worst case setup 

is highly inefficient. By calculating for a 1000 

classes always, we are consuming much more 

resources where as in actuality we might need a 

fraction of these calculations. Third, because we 

always assume a large data-set, the choices for 

algorithms is limited. There are algorithms which are 

more efficient for small to medium sized data-sets. If 

we can evaluate and model at runtime, it is possible 

to derive a better result by using more accurate 

algorithms. 

 

B. Modeling at Runtime 

Various techniques exist for creating a 

runtime 

We consider the following anycast field 

equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each 

of p node populations. 
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We give an interpretation of the various 

parameters and functions that appear in (1),   is 

finite piece of nodes and/or feature space and is 

represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

 

 
1

( ) (2)
1 z

S z
e



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It describes the relation between the input rate iv  of 

population i  as a function of the packets potential, 

for example, [ ( )].i i i i iV v S V h    We note 

V  the p   dimensional vector 1( ,..., ).pV V The p  

function , 1,..., ,i i p   represent the initial 

conditions, see below. We note   the  p   

dimensional vector 1( ,..., ).p   The p  function 

, 1,..., ,ext

iI i p  represent external factors from 

other network areas. We note 
extI  the p   

dimensional vector 
1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine the 

speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 

by 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     

and the diagonal p p  matrix 

0 1( ,..., ).pL diag l l Is the intrinsic dynamics of 

the population given by the linear response of data 

transfer. ( )i

d
l

dt
  is replaced by 

2( )i

d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed to 

be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 

of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

 

C. Mathematical Framework 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 
2 ( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we write 

(1) as  
.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 
  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers 

on this subject assume   infinite, hence requiring 

.m      

 

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 
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D. Boundedness of Solutions 

A valid model of neural networks should only 

feature bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

  

We note 1,...min i p il l   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
     

  

Let us show that the open route of F  of 

center 0 and radius , ,RR B  is stable under the 

dynamics of equation. We know that ( )V t  is 

defined for all 0t s  and that 0f   on ,RB  the 

boundary of RB . We consider three cases for the 

initial condition 0.V If 
0 C

V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 

  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 2 1( ) ( )f z f z  Where 
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1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  

 

( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    



  Where X  is the set of all points in the 

support of   whose distance from the complement 

of K  does not  . (Thus  X contains no point 

which is ―far within‖ K .) We construct  as the 

convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 

The constants are so adjusted in (6) that (8) 

holds.  (Compute the integral in polar coordinates), 

(9) holds simply because A  has compact support. 

To compute (10), express A  in polar coordinates, 

and note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows from (8). 

The difference quotients of A  converge boundedly 

to the corresponding partial derivatives, since 
' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) 

give (4). If we write (13) with x  and y  in place 

of ,  we see that   has continuous partial 

derivatives, if we can show that 0   in ,G  

where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall do 

this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  

For all z G  , we have now proved (3), (4), and 

(5) The definition of X  shows that X is compact 

and that X  can be covered by finitely many open 

discs 1,..., ,nD D  of radius 2 ,  whose centers are 

not in .K  Since 
2S K  is connected, the center of 

each jD  can be joined to   by a polygonal path in 

2S K . It follows that each jD contains a compact 
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connected set ,jE  of diameter at least 2 ,  so that 

2

jS E  is connected and so that .jK E     

with 2r  . There are functions 
2( )j jg H S E   and constants jb  so that the 

inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

  

(18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z  

Now fix  .z   , put ,iz e     and estimate 

the integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following ―Cauchy formula‖ holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, as 

0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

For each 0,r   is periodic in ,  with period 

2 . The integral of /    is therefore 0, and (4) 

becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  
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If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 872 

 
      

 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

  

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form an 

ideal 
'a  in A ,  and since A  is Noetherian, 

'a will 

be finitely generated. Let 1,..., mg g  be elements of 

a  whose leading coefficients generate 
'a , and let 

r be the maximum degree of ig . Now let ,f a  

and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   of 

degree 1d  . On applying this remark repeatedly 

we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

 

One of the great successes of category 

theory in computer science has been the 

development of a ―unified theory‖ of the 

constructions underlying denotational semantics. In 

the untyped  -calculus,  any term may appear in 

the function position of an application. This means 

that a model D of the  -calculus must have the 

property that given a term t  whose interpretation is 

,d D  Also, the interpretation of a functional 

abstraction like x . x  is most conveniently defined 

as a function from Dto D  , which must then be 

regarded as an element of D. Let 

 : D D D    be the function that picks out 

elements of D to  represent elements of  D D  

and  : D D D    be the function that maps 

elements of D to functions of D.  Since ( )f  is 

intended to represent the function f  as an element 

of D, it makes sense to require that ( ( )) ,f f    

that is, 
 D D

o id 


   Furthermore, we often 

want to view every element of D as representing 

some function from D to D and require that elements 

representing the same function be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

The latter condition is called extensionality. 

These conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions:  D D D   .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of  ,D D  

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X    from domains to domains 

--- that is, finding domains X  such that 

 ,X A X X    and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
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R

X

R

Y

f o f id

f o f id




  

Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 

considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain    is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    for 

all 0i  . We sometimes write : X   as a 

reminder of the arrangement of ' s  components 

Similarly, a colimit : X  is a cocone with 

the property that if 
': X   is also a cocone 

then there exists a unique mediating arrow 
':k X X  such that for all 0,, i ii v k o  . 

Colimits of chains  are sometimes referred to 

as limco its . Dually, an 
op chain   in K is 

a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object X 

and a collection of K-arrows  : | 0i iD i   such 

that for all 10, i i ii f o    . An  
op -limit of 

an 
op chain     is a cone : X   with 

the property that if 
': X  is also a cone, then 

there exists a unique mediating arrow 
':k X X  

such that for all 0, i ii o k    . We write k  

(or just  ) for the distinguish initial object of K, 

when it has one, and A  for the unique arrow 

from   to each K-object A. It is also convenient to 

write 
1 2

1 2 .....
f f

D D    to denote all of   

except oD  and 0f . By analogy,  
 is  | 1i i  . 

For the images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

Theorem 1.4 Let a DAG G given in which 

each node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 

the product of these conditional distributions yields a 

joint probability distribution P of the variables, and 

(G,P) satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

Where iPA is the set of parents of iX of in 

G and ( | )i iP x pa is the specified conditional 

probability distribution. First we show this does 

indeed yield a joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  
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whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of 

in G. Since k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 

We define the 
thm cyclotomic field to be 

the field   / ( ( ))mQ x x
 
Where ( )m x is the 

thm cyclotomic polynomial.   / ( ( ))mQ x x  

( )m x  has degree ( )m over Q since ( )m x

has degree ( )m . The roots of ( )m x  are just the 

primitive 
thm roots of unity, so the complex 

embeddings of   / ( ( ))mQ x x are simply the 

( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it follows 

that ( ) ( )k

m mQ Q  for all k relatively prime to 

m . In particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that 

we can write ( )mQ  for   / ( ( ))mQ x x without 

much fear of ambiguity; we will do so from now on, 

the identification being .m x  One advantage of 

this is that one can easily talk about cyclotomic 

fields being extensions of one another,or 

intersections or compositums; all of these things 

take place considering them as subfield of .C  We 

now investigate some basic properties of cyclotomic 

fields. The first issue is whether or not they are all 

distinct; to determine this, we need to know which 

roots of unity lie in ( )mQ  .Note, for example, that 

if m is odd, then m is a 2 thm root of unity. We 

will show that this is the only way in which one can 

obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 
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PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow 

i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and 

is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In a 

very noisy channel, the output iy and input ix would 

be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 

An average of the calculation of the mutual 

information for all input-output pairs of a given 

channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 
2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy provides ( ) ( )XH X H
Y

  bits of 

information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  
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And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

This last entropy is usually called the noise 

entropy. Thus, the information transferred through 

the channel is the difference between the output 

entropy and the noise entropy. Alternatively, it can 

be said that the channel mutual information is the 

difference between the number of bits needed for 

determining a given input symbol before knowing 

the corresponding output symbol, and the number of 

bits needed for determining a given input symbol 

after knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information 

expression is a difference between two quantities, it 

seems that this parameter can adopt negative values. 

However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is 

not possible for the average value calculated over all 

the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to 

the factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 

other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean 

n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1, 2,..., ,iB i u

form the desired code. Thus assume that the process 
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terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

E. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form 
i i

rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by   | ,ab a a b b 

is denoted by ab . Note that ab a b  . Clearly 

ab consists of all finite sums 
i i

a b  with ia a  

and ib b , and if 1( ,..., )ma a a  and 

1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring /A a
, and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal p  if prime if 

p A  and ab p a p    or b p . Thus p  

is prime if and only if /A p  is nonzero and has the 

property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is 

maximal if |m A  and there does not exist an ideal 

n  contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   

m prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 

( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  together 

with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R 

. Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is 
ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

a A
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 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding whether 

( )f g , namely, find r and check whether it is 

zero. Moreover, the Euclidean algorithm allows to 

pass from finite set of generators for an ideal in 

 k X to a single generator by successively 

replacing each pair of generators with their greatest 

common divisor. 

 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if 
i ia b  , or 

i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 

order. For example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 0 ;  

 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) = 

0X


; 

 The leading term of 
f

to be LT(
f

) = 0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, 

the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 1 

with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 

ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, and 

let  |A X a  . Then A satisfies the 
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condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A 

is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at 

random from the !n  possible permutations in ,nS  

then the counts 
( )n

jC  of cycles of length j  are 

dependent random variables. The joint distribution 

of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
    

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 

and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 

0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 

a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 

inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the ―property‖ G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 
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moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the intersection. 

There are 
[ ] / ( !)rj rn j r  such intersections. For the 

other case, some two distinct properties name some 

element in common, so no permutation can have 

both these properties, and the r -fold intersection is 

empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  properties 

is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

 

Which simplifies to (1.1) Returning to the 

original hat-check problem, we substitute j=1 in 

(1.1) to obtain the distribution of the number of fixed 

points of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i
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b

c lb b
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 
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     

     


 
  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution one 

shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about 

the rate of convergence. Elementary analysis can be 

used to estimate this rate when 1b  . Using 

properties of alternating series with decreasing 

terms, for 0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


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It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)
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n nn
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k
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n n n

 
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
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Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 881 

 
      

 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'
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n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity 

derived from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from some 

' 0,g   since, under these circumstances, both 

 
1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as 

.n   In particular, for polynomials and square 

free polynomials, the relative error in this asymptotic 

approximation is of order 
1n

 if 
' 1.g    

 

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b
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n b





 

  

Where 
 7,7

( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 
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0
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Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
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Hence we may take 

 

 

 

10.81

07,7
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Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not, 
   10.8

n
 can be 
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replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  

that is, that we should need 1

2
( )

a

ill
l O i 


   to 

hold for some 1 1a  . A first observation is that a 

similar problem arises with the rate of decay of 1i  

as well. For this reason, 1n  is replaced by 1n


. This 

makes it possible to replace condition 1( )A  by the 

weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for 
   7,7

,n b  to be 

of order ( / );O b n   the decay rate requirement of 

order 
1i  

 is shifted from 1i  itself to its first 

difference. This is needed to obtain the right 

approximation error for the random mappings 

example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is 

in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n   
 in the 

estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in 
 7.7

( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n    for 

any 0  , to replace 
 7.7

( , ).n b  This would be 

of the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   

 

 

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1
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Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        for 

any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  
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Now we observe that  
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We have   



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 883 

 
      

 

     

0[ /2]

0

0

[ /2]

0

0

[ /2]

0 0

0

0 02
0 00

1

010.14 10.8

[ ]

[ ]

( [ ]( [ ] [ ]

( )(1 )
[ ] [ ] )

1

1
[ ] [ ]

[ ]

( , ) 2( ) 1 4 ( )

6

bn

n

r

n

b bn bn

s

n

b n

s

b b

r sn

P T r

P T n

P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n

n b r s n K n



   



 

 

 

 





 
       

 

  
   

 

   


    









 

 

  



0 10.14

2 2

0 0 10.8

( , )
[0,1]

4 1 4 ( )

3
( ) , (1.2)

[0,1]

b

b

ET n b
nP

n ET K n

nP








  



   

  

 

The approximation in (1.2) is further simplified by 

noting that  
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and then by observing that  
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Combining the contributions of (1.2) –(1.3), we thus 

find tha
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The quantity 
 7.8

( , )n b is seen to be of 

the order claimed under Conditions 0 1( ), ( )A D  and 

12( )B , provided that ( ) ;S     this 

supplementary condition can be removed if 

 10.8
( )n

 is replaced by 
 10.11

( )n
   in the 

definition of 
 7.8

( , )n b , has the required order 

without the restriction on the ir  implied by assuming 

that ( ) .S   Finally, a direct calculation now 

shows that 
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1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

―standard origin‖.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a 

number, addition. Operations with points and 

vectors: adding a vector to a point (giving a point), 

subtracting two points (giving a vector). 
n treated 

in this way is called an n-dimensional affine space. 

(An ―abstract‖ affine space is a pair of sets , the set 

of points and the set of vectors so that the operations 

as above are defined axiomatically). Notice that 

vectors in an affine space are also known as ―free 
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vectors‖. Intuitively, they are not fixed at points and 

―float freely‖ in space. From 
n considered as an 

affine space we can precede in two opposite 

directions: 
n  as an Euclidean space  

n as an 

affine space  
n as a manifold.Going to the left 

means introducing some extra structure which will 

make the geometry richer. Going to the right means 

forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 

―smooth (or differentiable) manifolds‖. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few words 

about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 

things as ―lengths‖, ―angles‖ or ―areas‖ and 

―volumes‖. To be able to do so, we have to introduce 

some more definitions, making 
n a Euclidean 

space. Namely, we define the length of a vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses 

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points; 

the distance from A to B is the same as that from B 

to A (symmetry); also, for three points, A, B and C, 

we have ( , ) ( , ) ( , )d A B d A C d C B   (the 

―triangle inequality‖). To define angles, we first 

introduce the scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral multiple 

of 2  . For this definition to be consistent we have 

to ensure that the r.h.s. of (4) does not exceed 1 by 

the absolute value. This follows from the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 

names are applied in different books). One of the 

ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be 

less or equal zero. Writing this explicitly yields (5). 

The triangle inequality for distances also follows 

from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on 

an arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

 

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 
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0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 

0t   (we used the linearity of 0( )df x ). By the 

definition, this means that the derivative of 

( ( ))f x t  at 0t t  is exactly 0( )( )df x  . The 

statement of the theorem can be expressed by a 

simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

 

To calculate the value Of df  at a point 0x  on a 

given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  

instead of  . The only difference is that now the 

differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 

vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 
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passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to 

get ( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also 

be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  

on 
nx  is given by the map F , the dependence 

of 
pz  on 

my  is given by the map ,G  

and the dependence of  
pz on 

nx is given 

by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  

Here the variables 
1( ..., )ny y  are the ―new‖ 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  
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( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the ―standard‖ coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a 

basis at all points except for the origin (where 0r 
). It is instructive to sketch a picture, drawing 

vectors corresponding to a point as starting from that 

point. Notice that  ,x x
r 

 
 

 are, respectively, 

the velocity vectors for the curves ( , )r x r    

0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it 

is not ―constant‖ but depends on point. Vectors 

―stuck to points‖ when we consider curvilinear 

coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 

1( ,..., )i nx x x x   (all coordinates but 
ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the 

polar coordinates. In particular, we see that this is 

again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         
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If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

Let p  be a rational prime and let 

( ).pK    We write   for p  or this section. 

Recall that K  has degree ( ) 1p p    over .  

We wish to show that  .KO    Note that   is 

a root of 1,px   and thus is an algebraic integer; 

since K  is a ring we have that   .KO   We 

give a proof without assuming unique factorization 

of ideals. We begin with some norm and trace 

computations. Let j  be an integer. If j is not 

divisible by ,p  then 
j  is a primitive 

thp  root of 

unity, and thus its conjugates are 
2 1, ,..., .p   

 

Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If p  does divide ,j  then 1,j   so it has only the 

one conjugate 1, and  
/ ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 

 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings of K  

(which we are really viewing as automorphisms of 

K ) with the usual ordering.  Furthermore, 1
j  is 

a multiple of 1   in KO  for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 
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2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next consider 

the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local 

ring ( )p  is simply the subring of   of rational 

numbers with denominator relatively prime to p . 

Note that this ring   ( )p is not the ring p of p -

adic integers; to get  p one must complete ( )p . 

The usefulness of ,K pO  comes from the fact that it 

has a particularly simple ideal structure. Let a be 

any proper ideal of ,K pO  and consider the ideal 

Ka O  of .KO  We claim that 

,( ) ;K K pa a O O     That is, that a  is generated 

by the elements of a  in .Ka O  It is clear from 

the definition of an ideal that ,( ) .K K pa a O O   

To prove the other inclusion, let   be any element 

of a . Then we can write /    where 

KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and 

.p   so .Ka O    Since ,1/ ,K pO   this 

implies that ,/ ( ) ,K K pa O O      as 

claimed.We can use this fact to determine all of the 

ideals of , .K pO  Let a  be any ideal of ,K pO and 

consider the ideal factorization of Ka O in .KO  

write it as 
n

Ka O p b   For some n  and some 

ideal ,b  relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  , , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form 
,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in ,K pO

. Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 

in / ,K pO  which makes sense since   is invertible 

in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of ,K pO is maximal.  To 

show that ,K pO is a Dedekind domain, it remains to 

show that it is integrally closed in K . So let K   

be a root of a polynomial with coefficients in  

, ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order / ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     
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This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

 

V. CHALLENGES TO THE QUALITY OF POWER 

AND COMMUNICATIONS FOR THE SMART 

GRID 
The following elaborate on a series of 

essential attributes for the smart grid, as shown in 

Figure 5. As a matter of fact, they are interconnected 

in a very close relationship as cause-effect among 

one another. Each of them should be well considered 

for the progressive strategies and designs in both 

power and communications fields to support the 

smart grid development. 

 

A. Reliability and Stability 

Reliability has a durability feature. In 

general, it interprets the operational health and 

degree of volatility of the entire system. It further 

presents the state of high consistency, repeatability, 

and dependability that the smart grid will maintain in 

accordance with effective measurements and 

assessments. The stability of a system determines the 

level of reliability for which the system is qualified. 

Meanwhile, reliability is dependent upon the 

achievement of other contributing and decisive 

factors, described in the following subsections. The 

smart grid must guarantee voltage and current 

stability, mitigate peak demand and load variability 

with implementation of DG and energy storage over 

wide areas, and preclude a variety of incidents. 

 

B.  Measurability and Controllability 

Service interruption and faults are serious 

and possible to happen. It is important for them to be 

measurable and controllable in such a way that 

deliberate evaluations and assessments can take 

place. The smart grid is capable of identifying and 

correcting disruptive operations through dynamic 

measurements and control monitoring in real time. 

In the meantime, some degrees of observability and 

transparency should be obtained in order to 

efficiently analyze, manage, as well as predict and 

respond to varying network conditions. A wealth of 

data information, which considerably makes the grid 

smart, must also be measurable, observable, and 

manageable. 

 

C. Flexibility and Scalability 

The grid is moving from a centralized 

infrastructure to multiple decentralized MGs. 

Scalability of the electric power system has to be 

well determined. By means of islanding, MGs 

attempt to incorporate DG and energy storage for 

contributing energy to utilities as well as to local 

served areas during times of peak demand. The 

island functionality [61] introduces a concept of a 

giant smart grid composed of multiple micro smart 

grids. Each local grid is able to operate 

autonomously with respect to DSM, quality and 

reliability model, fault management, and security 

management. While fulfilling the scalability goal, 

flexibility allows the smart grid to provide multiple 

redundant alternate routes for power and data to 

flow, as well as supply options for feasible control 

and operation when needed. Flexibility may also 

apply to a set of standards exercised in the smart grid 

such that they should be available and upgradeable 

throughout the world including ANSI, IEC, PLC, 

wireless M-Bus, and ZigBee.  

 

D. vailability 

The availability of power and 

communications is essential upon consumers’ 

requests for energy and information. It relies upon 

the availability of data exchanged in the network. A 

high degree of resource availability is required 

especially when dealing with the latency and 

security issues. For examples, a latency of few tens 

of milliseconds should be achieved in line protection 

and control systems; a DoS attack can aggravate 

network performance causing servers or services 

temporarily unavailable. The redundancy measure 

might be a foreseeable resolution to the problem. 

However, its effectiveness will depend upon how the 

system should be designed while avoiding the 

consequent costs of high network complexity as well 

as the scalability matter. 

 

E.  Resiliency 

The degree of resiliency determines how 

reliable the smart grid actually is when incidents 

happen. Especially from the safety and security 

perspectives, resiliency represents the capability to 

restore and recover from various disruptions or 

malfunctions through the robust fast-response 

process. The vulnerable electric components in the 

grid are likely transmission lines and stations, large 

power plants, and nuclear plants with leakage. 

Multiple contingency plans are required to address 

any failures or destruction caused by natural 

disasters, deliberate attacks, or malicious activities. 

 

F. Smart Failover/Fail-back Mechanism 

The shortcoming of this failover/fail-back 

mechanism described previous section is that it is 

not graceful when it comes to job management. 

Whenever a failover to backup occurs, all the jobs 

running and in the job queue are lost and must be 

resubmit at startup of both backup- and primary-

server. This situation is particularly aggravated when 

jobs must be submitted numerous times due to 

multiple fail/recovery restarts. Furthermore, those 

jobs still running will have to discard their 

―preliminary‖ results and start over in the job queue. 

Timely check pointing is one obvious solution but 

not many schedulers come with an automatic 

checkpoint/restart facility. The OpenPBS scheduler 

offers check-pointing facility for the SGI and IRIX 
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platforms but not for others. Thus, this situation 

must be properly handled and to do so, we introduce 

the ―smart failover/fail-back mechanism‖ in HA-

OSCAR. This mechanism periodically saves job 

states in the queue and rsyncs those states to the 

backupserver machine. When the backup-server is 

called to action, it will then start jobs from its last 

saved job state. Thus, with the exception of any 

running job, we are able to guarantee the processing 

of jobs in the queue and in queue order. This feature 

also alleviates the user from the task of resubmitting 

all those jobs that were sitting in the queue at the 

time of failure. If the jobs were submitted locally, by 

non-Globus mechanisms, their output and error logs 

can be retrieved from files specified in the script file 

input to qsub. When the jobs are submitted through 

the grid, the Globus gatekeeper invokes a job 

manager which in turn invokes the scheduler 

specified (GT 2.4 specific). The job manager co-

ordinates the transferring of output and error logs to 

the client who submitted the jobs. Whenever we 

failover all connections are lost and as the jobs are 

restarted on the backup, the job manager is not in 

place to collect the output and error log from the 

jobs. This scenario can be handled by updating the 

saved job state files to redirect the output and error 

logs to files Proceedings of the 19th International 

Symposium on High Performance Computing 

Systems and Applications having names starting 

with job ids. In this way the client can fetch those 

files to view later as the output and error logs are 

based on the job ids of their jobs. This is an area of 

future research. The situation gets a bit complex 

when dealing with fail-back, as the standby 

immediately gives up its IP to the primary and there 

is no chance of transferring the jobs states back to 

the primary. This situation can be handled if we have 

a shared storage medium between the Primary and 

standby nodes. This too is an area of future research. 

There is presently a prototype implementation 

supporting the smart failover mechanism in our lab 

that has not yet been publicly released. 

 

G. Automated Grid Installation Package 

As mentioned earlier, the installation and 

configuration of Grid Tools and packages becomes 

challenging for novice users. This installation and 

configuration should be automated and efforts have 

been initiated in that direction. ROCKS provides a 

package called ―Grid-Roll‖ which installs the 

Globus toolkit during setup thus alleviating the user 

of many setup and configuration tasks. Similarly, as 

part of the OSCAR group, we are developing an 

automated Globus toolkit and accessories 

installation package. This OSCAR grid package will 

enable an OSCAR cluster software stack installation 

for both the standard release as well as the HA-

OSCAR environment. Before the installation of the 

Globus toolkit we need to verify that the support 

software is in place and the environment is properly 

setup. Even after the installation we need to 

manually tweak some files such as adding the 

Globus library path to /etc/ld.so.conf, creating 

xinetd.d files for gatekeeper and grid-ftp services, 

installation of support software for interfacing with 

local schedulers such as PBS, Condor and much 

more. All these steps, if automated, shall help 

reducing the planned downtime of the system for 

such installations and configurations on OSCAR 

clusters. We have created prototype version of this 

installation process using the OSCAR packaging 

framework. 

 

H. Implementation and Experimental Results 

Figure 4 shows the setup used in this 

experiment. The site-manager is a cluster head node 

based on the OSCAR installation. We have installed 

Globus Toolkit version 2 (GT2.4) and run grid 

services there as we were dealing with pre web 

services only. We also installed the client utilities of 

GT2.4 on a client machine in the grid. Later we 

enabled the site-manager with HAOSCAR to create 

a standby node, an active redundancy, which was the 

exact clone of the site-manager. The HA-OSCAR 

monitoring service monitored the gatekeeper and 

gridFTP services on the server every 3 seconds. 

Every 3 seconds the script tried to establish telnet 

connections to the port numbers on which the 

Globus gatekeeper and gridFTP accept connections. 

If the connection was established we assumed that 

the service was alive and working. In addition, 

critical services such as xinetd, SGE, Condor, PBS 

and NFS were also being monitored with the 

corresponding policy for recovery from failure. The 

standby node also monitors the primary server every 

3 seconds for availability. 

 

Fig. 4 Setup used to perform the experiment 

During the first set of experiments, we 

simulated service outages by killing the Xinetd 

daemon and observed whether a failure of 

gatekeeper or gridFTP services (as they are started 

on demand by Xinetd daemon) was detected and 

then restarted by the HA-OSCAR recovery 

mechanism. Normal operation was validated after 

ensuring that client was able to run ―globus-job-run‖ 

using both the fork job manager as well as PBS 

jobmanager and ―globus-url-copy‖ commands 

successfully. We ran a MPI job using the PBS job 

manager for validating the server client connectivity. 

The ―globus-url-copy‖ command involves the use of 

the gridFTP server for transferring files from one  

 

VI. ANALYSIS OF DATA CHARACTERISTICS 
A. Diversity of Data Sources 

The Smart Grid’s intelligence and 

adaptiveness depends on the ability to acquire and 

integrate diverse information that help perform 

accurate load forecasting and curtailment by utilities 

and provide rich services to customers. A Smart 
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Grid utility uses both direct power systems 

information and information that indirectly helps 

forecast, correlate and control power usage. Direct 

information sources include consumer smart meters 

that transmit power usage and smart appliances data, 

sensors at transformers and distribution stations, and 

customer information systems used for billing. 

Indirect sources are historical, current and forecast 

weather from NOAA, social network and schedule 

information shared by consumers for load 

prediction, studying consumer behavior on the 

utility’s website, and mobile applications that may 

send consumer location information and receive load 

curtailment response. The conceptual diversity 

present in the Smart Grid system gives rise to a 

wider range of information from multiple sources 

that need to be secured and controlled according to 

policies defined by the data owners. These data 

sources include information that is both public and 

private, with ownership belonging to the different 

user roles introduced before. Increasing information 

flows raises the chance that personally identifiable 

information will be passed which, if not handled 

carefully, can lead to violation of an individual’s 

privacy. Cloud platforms need to support secure data 

acquisition from different information sources. 

While public Clouds are naturally suited for scaling 

out and processing millions of user requests, the 

diversity of information also requires diverse storage 

services that can enforce security and privacy 

policies. The policies themselves can be complex 

and varied, given the number of different 

information sources such as consumers, public 

agencies, online service providers and prior utility 

data. 

 

B. Data Size and Temporal Granularities 

Smart Grid utilities need to handle data at 

extreme scales of data size. At one end, HAN 

systems can report fine-grained usage of smart 

appliances, on the order of bytes/kilobytes to the 

utility through the smart meter. At the other end, this 

data accumulated from millions of consumers over 

years can grow to petabytes (PB) in size, and form a 

data mining corpus to detect load patterns and test 

response scenarios. The size of data collected may 

vary continuously as adaptive demand-response 

algorithms control smart meter data collection rates, 

and add or drop information sources [11]. Privacy 

policies and security infrastructure has to efficiently 

and effectively support such diverse information 

sizes. The frequency of data generation and its 

timeliness of use in Smart Grids also differs from 

traditional power grids. 

 

VII. BUILDING A UNIFIED SOFTWARE 

SERVICES INTERFACE 
The Software Service Interface (SSI, or 

Software Systems Interface) is a middleware 

between applications, fundamental smart grid 

services, and third-party services. Typically, SSI is 

implemented as a bus where different applications 

and services can post and exchange messages. 

Examples of applications include intelligent VAR 

control systems, demand response programs, and 

substation automation. Fundamental application 

services include load flow, state estimation, and load 

forecasting, among others. Because SSI is a 

comprehensive architecture, SSI is an enabler for 

communications between smart grid applications 

and services. The ambitious goal set forth by SSI 

proponents is to achieve a universal communications 

platform between applications and basic services. 

SSI cannot be a product or an application by itself.  

 

The need to know about the types of data 

transmitted through the SSI bus (expected inputs and 

outputs in the appropriate format) may lead to over-

engineering and distract a software developer from 

the initial implementation of the communications 

platform.  

 

A. Acknowledging Needs for SSI 

Depending on individual situations, SSI may prove 

superior to other architectures: 

- When multiple services and applications need to 

communicate with each other, 

- With large DMS/EMS applications deployments 

that utilize multiple services and multiple 

applications, 

- When modules need to listen to all system events 

in a way that is similar to the IEC 61850 substation 

event bus. 

 

B. Software Services Communications 

Standards 

The IEC 61850 [8] standard defines how 

substation equipment should communicate among 

each other.   CIM [9] standardizes how models are 

coded to facilitate exchange of model data between 

GIS, DMS, and EMS. Existing communications 

standards include the DNP protocol in substations, 

IEEE 802.11 [10] (ethernet for wireless devices), the 

Zigbee protocol for communications between energy 

devices in a wireless home area network (IEEE 

802.15.4) [11], and, more recently, 3G and 4G cell 

phone standards.  

 

C. Development and Testing Challenge 

Because each standard defines its own 

requirements, an Agile development process to 

support all the standards must implement and test 

requirements in a priority order that allows customer 

functionality to be implemented. Following such a 

gradual approach increases the quality and 

robustness of each supported aspect of a standard. 

Because SSI aims at comprehensiveness, the testing 

of individual functionality is more challenging than 

with simple architectures. Quality is more difficult to 

assess with more complicated services. However, 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 893 

 
      

 

using an approach such as Agile helps determine the 

development steps to gradually implement SSI 

depending on business needs. 

 

VIII. REAL TIME REQUIREMENTS 
Smart grid software must process models 

and measurements so that utilities and consumers 

can have access to power data in real time. Smart 

grid technology is expected to optimize large 

distribution networks within minutes and obtain the 

system state several times per minute. In this section, 

we examine the various implications for the 

development of real-time smart-grid software 

services. 

 

A. Speed Requirements 

Recent distribution automation applications 

must process circuits in real time to provide 

operating recommendations. Distribution 

optimization applications scan feeder data and 

measurements for improvements and should process 

several million nodes within minutes. Such desired 

processing speeds impose strict time requirements to 

the distribution load flow, state estimation, and 

optimization processes. Load flow may be needed a 

few dozen times per second, and state estimation up 

to ten times per second. Architectural overhead 

increases the total processing time depending on 

architecture complexity. The total processing time is 

tied to architectural choices as well as the 

performance of the individual components of the 

chosen architecture. 

 

B. Programming Platforms 

Programming platform come with tradeoffs 

between performance control and ease of 

development. Platforms such as Java can be 

mastered quickly; however, automatic garbage 

collection is often times a handicap in real-time 

programming [8, 9], especially when programmers 

have no control on the duration of a garbage 

collection cycle. As an alternative, the Ruby 

platform offers control over garbage collection. In 

contrast, C/C++ is usually fastest as it compiles 

directly to CPU instructions. Granularity of control 

to the developers is greater than with Java or similar 

languages; however, memory management is the full 

responsibility of the developer. 

 

C. Software Complexity 

Most of the time, software complexity and 

layers such as security layers reduce real-time 

performance. Simple software service architectures 

are easier to fine-tune for performance than large 

architectures such as SSI. The different software 

layers in large architectures increase overhead 

processing without adding value, but are useful if 

disparate communication protocols exist between 

software services. 

 

D. Communications Delays/Lags 

Communications delays and lags caused by 

long communications lines must be accounted for. 

Time stamps may be applied to mark time-sensitive 

data. Also, exchanging megabytes of data several 

times a second between servers may raise questions 

about where the data should be handled, as fewer 

batches of data exchanged also mean less time spent 

encoding or decoding the data. 

 

E. Server Requirements 

Communications in real-time services 

should be limited to the originating and destination 

servers. Compared to the VIP architecture, and 

depending on implementation, additional redundant 

servers may be required to dispatch the messages 

posted on the SSI bus while maintaining service 

continuity in the event of a server failure. 

 

F. Security and Data Integrity 

Utilities take security seriously, given the 

potential for a hacker to penetrate utility servers and 

issue commands that could take an electric network 

out of control. The time needed to authenticate, 

process the security layer, and to encrypt/decrypt 

data with a strong cipher must be accounted for in an 

application. 

 

IX. DEMAND RESPONSE AND END-USERS 

PREFERENCES FOR EFFICIENT 

CONSUMPTION OF ENERGY 
An effective approach for achieving 

demand response requires techniques at the 

consumption level too. This is done by having an 

intelligent framework at the consumption side. For 

example, at home level, input is taken from the grid 

and, depending on various underlying factors, the 

framework assists the consumer to achieve demand 

response. There are no related works in the literature 

in this regard but the importance of such work has 

been discussed by Hopper et al. [27] who state that 

there is a role for targeted technical assistance 

programs to help customers to develop more 

sophisticated price response strategies as shown in 

Figure 3. There is a utility provider which sends 

price signals to end-users and receives the 

consumption information by means of a smart meter 

and wireless communication of the sensors (smart 

appliances).  

 

The consumer mutually receives some 

information from the utility provider about 

consumption profile and price signals from various 

portals. It is expected that, by receiving consumption 

information, the consumers will change their 

consumption behaviour in order to mitigate cost and 

save on their power bill. However, in a dynamic 

pricing system, the consumers have no way of 

knowing whether their decision to modify their 

energy consumption is effective and efficient. This is 
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overcome by adding intelligence at each home level. 

In this paper, we will develop a model by which 

such intelligence is added at each home level on a 

continuous basis by which demand response is 

achieved. We will propose our model in the next 

section. 
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