
ISSN (e): 2250 – 3005 || Volume, 08 || Issue, 7|| July – 2018 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 1

Importance of Compression Technique in Matrix and Graph

Computations on Mapreduce Framework

Mandavamanjula
1,
 Ms.J.Ramadevi

2

1 PG Student, CSE Department, PVPSIT College/JNTUK University, Vijayawada, A.P, India,

2 Sr. Asst. Professor, CSE Department, PVPSIT College/JNTUK University, Vijayawada, A.P, India

Correspondence Author: Mandavamanjula

--- ----------

Date of Submission: 29-06-2018 Date of acceptance: 14-07-2018

--- --------------

I. INTRODUCTION

In present days we have a dramatic increase of data from different sources such as like independent and from

the connected services. The best example is Internet why because of data in the internet is updated and used by

worldwide.[1] Internet needs high storage spaces and we are also not estimate how much data is added per

second is also tough. Large data collection with different data types is nothing but a BIGDATA even in the

bigdata applications also large data processing is not supported by the NOSQL databases and PDMS (parallel

database management systems).We are using the HBase in HADOOP., [4]and Hadoop MapReduce(MR) used

for knowledge extraction. Hadoop process the bind knowledge is 49% slower than the uncompressed data.

However, knowledge binding increases the processing time and reduces the storage spaces on disk space. The

most scientific applications of data sets are binded/compressed format.

Data warehouses are with the large scale data of Facebook is compress all data. Usually Facebook Collect more

than 600TB of data with uncompressed format as of 2013,[2] this leads to adding a storage racks for every two

days. As we are comparing with a new compression factor of 7, the storage data is diminishes to 100TB and

huge quantity of information is processed to data ware houses it occupies 9.6GB it would be more feasible and

reasonable.

Many companies use different types of compression formats like[2] LZO, snappy, and Gzip to reduce their

storage spaces and increases their runtime. In Hadoop MapReduce pattern is used to reducece the processing

time of binded knowledge. MapReduce performance is done by 2 factors

1. Hadoop distributed file system doesn’t treated the storage space for the binded information it is treated as

unbinded information.

2. MapReduce’s resource allocation is binded size but the required resources after the the execution is

uncompressed size.

ABSTRACT

As throughout this paper, we’ve got associate degree inclination to propose coming up with and

usage of the N/W Overlapped Compression theme and CAS theme. CAS decreases the info load

time and also hides the compression overhead and processed one after another in sequential fashion

of a network Input/output demand transfer with bind format. CAS improves the dynamic

allocation of blocks with different block sizes.[4] Information on scientific applications and

analytic applications running in Hadoop can increase info compression has become essential to

store this info at intervals an affordable storage value, although info is usually keep compressed,

presently Hadoop takes forty ninth longer compressed info is comparison with uncompressed

information. Compressed info decreases the task correspondence and Distributing the uneven

work for every block. The MR parallel programming pattern ought to alleviate the magnitude

connection. To boot, are bent to implement a MR phase that recognizes the features of bind info

spice up method allotment and load balance ,in combination of intelligence officers, CAS and MR

phases job execution time reduces the time by sixty six and data load time by thirty first.

 KEYWORDS — information bind, MapReduce, Hadoop

Importance Of Compression Technique In Matrix And Graph Computations On Mapreduce

Framework

www.ijceronline.com Open Access Journal Page 2

For the issues we have 3 problems

1. For every mapping tasks are created and the compressed data is determined. For this the amount of mapped

tasks and compression ratios are decreases as long as the process of every tasks is increases this leads to

increases the job runtime.

2. Every map tasks runtime and the length of the map tasks is vary and it also depends upon the compression

ratios. Variations among the tasks runtime then prolongs the job execution time it leads to back up the load

balance.

3. Compressing data is significant in data warehouses there is a time taken to load knowledge to clusters on

data centres.

II. LITERATURE SURVEY

Data/Knowledge compression is widely used in the computing applications with the utilization of parallel

database management systems. Knowledge compression have many advantages for back of storage

consumption. Optimized row column format is enhanced usage of [2]Facebook to improve the compressed

statistics it is mostly dependent information and processed with queries. Implementation of Hadoop produces

massive scale processing on scientific and analytic applications.

Large scale compressed block by block matrix-matrix multiplications are used in data analytic applications and

scientific applications. The matrices can be categorized into two broad types such as sparse and dense matrices.

In order to process matrix computations in parallel, partitioning the input matrix in blocks and these partitions

are assigned to different processes. For the solution of a linear system Ax = b, efficient block by block matrix-

matrix and matrix-vector operations are carried out. The efficiency of a given large scale compressed block by

block matrix-matrix multiplication algorithm depends upon amount of arithmetic operations and storage

required by a procedure, stride, memory access, and other data movement overheads.

An Overview of Compression techniques

The naturally Hadoop supported compression format is Gzip. [5]Gzip is based on DEFLATE algorithm, which

combination of Huffman coding and LZ77 algorithms. LZO compression is composed many smaller blocks

(256K) of compressed data and split along block boundaries. LZO is designed with speed in mind: it

decompresses twice as fast as Gzip, but it does not compress quite as fast as Gzip. Snappy is a compression and

decompression algorithm. The main aim is very high speed and reasonable compression. An other efficient

mode zlib, Snappy is very fast for more inputs, but the resulted compressed files are from 20% to 100% larger.

Snappy compress at 250 MB/sec and decompress at 500 MB/sec on the single core with the i7 process with 64-

bit mode. Snappy is widely used in Google, Big Table and MapReduce to our internal RPC system.

Graph Computations

Graph computations are used in numerous scientific applications. The large graph computations involve

building of sparse matrix based on adjacency graph which contain edge weights as per applications. The existing

algorithms have restrictions to load the complete graph data and process in the memory of the system. Typical

graph computational algorithms assume that the graph fits in the memory of a system, and in case of BIG

DATA, the data of graph is spanned across the multiple Giga to Tera bytes of data. The graph partitioning

methods are employed to distribute the sub-graphs on multiple core processors which show orders of magnitude

performance greater than traditional sequential algorithms. Also, Out-of-Core algorithms for graph

computations have been established.

The graph data can be stored on the disk the format of storage as like compressed spare row and compressed

column .The graph values can be processed in sequential fashion.

 Graph Computations – on a sparse Graph

Several authors developed algorithms for parallelization of storage of a sparse graph G(V,E) having v vertices

and e edges. These algorithms involve unstructured communications and load balancing is the significant issue

in implementation. The first step is to use decomposition techniques which recognize the concurrency that is

available and decompose it into tasks that can be executed in parallel. The next step in the process of designing a

parallel algorithm is to take these tasks and assign (i.e. map) them to the available processors. Achieving load

balancing is another main issue in the coloring of a graph. Static load balancing methods distributes the work

among processors prior to execution of the algorithm. Dynamic load balancing methods distribute the work

among processors during the execution of the algorithm. Algorithms such as coloring a sparse graph, parallel

graph partitioning algorithms, and parallel search algorithms require dynamic load balancing.

In graph coloring no two adjacent vertices have the same color is called the proper coloring of a graph. A set of

vertices in a graph is said to be an independent set of vertices or simply an independent set if no two vertices in

Importance Of Compression Technique In Matrix And Graph Computations On Mapreduce

Framework

www.ijceronline.com Open Access Journal Page 3

the set are adjacent.[6] A maximal independent set is an independent set to which no other vertex can be added

without destroying its independence property.

 Explain the coloring of sparse graph using three colors. Several algorithms exist in parallel and serial graph

coloring. Luby‟s Algorithm for coloring a graph is quite popular. Luby's algorithm chooses each maximal

independent set by using a randomized algorithm in an incremental fashion. Graph partitioning with Lucy’s

algorithm for a graph coloring has been used in many applications. Large-scale graph partitioning tools are

available, e.g. METIS, SCOTCH, and Chaco are used in graph colourings algorithms.

III. EXISTING SYSTEM

The no.of mapping tasks decreases the compression ratio also decreases and the[3] quantity of the data for each

process increase. Individual process resulting more data increased job runtime and decreased parallelism. The

variation between each map task’s runtime increases. Runtime variation results long running tasks which

prolong job execution time and reduce load balance time. Compression and data transfer is done sequentially

which further increases the time till users can process their data.

IV. PROPOSED SYSTEM

The proposed algorithm and procedures identifying and solving the above problems to avoid the n/w traffic

overhead and I/O map task skews in the proposed work.

Develop Network Overlapped Compression (NOC), reduces[3] data load time and hides compression overhead

by interleaving network I/O. Compression Aware Storage (CAS), increases parallelism by changing file’s

dynamically block size with compression ratio. Map Reduce module, which recognizes the features of

compressed data to improve resource allocation and load balance.

V. IMPLEMENTATION

MapReduce:

• MapReduce is a programming pattern/model.

• MapReduce is implemented for large data sets for processing and generating large data with parallel

distributed algorithms that data is stored in HDFS.

• It contains Compressed Task Divider and Compressed Task Reader.

New Compression Algorithm (BZIP2):

The compression algorithm to processing the compressed data using Map Reduce framework.

• The problem is aimed to improve performance of compressed data processing using Map Reduce (MR)

framework.

• The new compression algorithm is split table the input data, to reduce the secondary storage space and

increase the I/O transfer rate.

• Develop the Map Reduce module to recognize the features of compressed data to improve the allocation of

resources and load balance.[8]

Bzip2 Compressed Matrix Computation using MR
Matrix multiplication of 2 dimensional dense matrices or sparse matrices based on Hadoop MapReduce can be

developed in different ways. For simplicity we assume that both of the input matrices either square matrices or

rectangular matrices. Several different strategies are possible for partitioning the input matrix A and input

matrix B and then compresses the block matrices using Bzip2 compression in Hadoop MapReduce

implementation. It is expected that the Hadoop cluster is size ―p‖ and each node ―m‖ in the cluster has 16 core

processor joined with fast Ethernet network.

STRATEGY 1:

In MapReduce job framework, each map task processes[9] a compressed block of the input file. In the case of

compressed block matrix multiplication, the matrix A is one input file and the block contain a piece of block

data from the file i.e. matrix A. The two matrices are necessary as input matrices for matrix computation. Each

map task can access one input matrix only but not both matrices at a time if both matrices are stores separate

HDFS files.

Different implementations such as (i) map task reads the decompressed data from the both matrices, (ii)

distributes the input matrix data to reduce tasks, (iii) reduce task completes the compressed block matrix

multiplication and (iv) reduce task use temporary HDFS file to write the intermediate result.

STRATEGY 2:

Importance Of Compression Technique In Matrix And Graph Computations On Mapreduce

Framework

www.ijceronline.com Open Access Journal Page 4

We divide the each of the input matrix A and input matrix B into X * X small square blocks of same size and

compresses the input matrix block using Bzip2 compression. The size of the each compressed input block X * Q

and Q * X and output matrix consists of X* X blocks of data and each resulting from addition of B compressed

block matrix multiplications. In our implementation, each task handles one compressed block matrix

multiplication. We map each task to each mapper and X3 map tasks are necessary to complete the computation.

STRATEGY 3:

We divide the each of the input matrix A into x row wise strips and compress the block [9]and input matrix B

into x column wise strips and compress the block using Bzip2 compression. The mapper tasks are given to one

row wise block strip and one column wise block strip. Each map task yields m/x * m/x blocks in the output

matrix. The total number of map tasks in the partition would be x2.

STRATEGY 4:

There are two techniques to implement bzip2 compressed block matrix multiplication. (i) The block partitioning

of matrix A and row wise partitioning of the input matrix B and perform the matrix computations and (ii) row

wise partitioning of the input matrix A and the block partitioning of the input matrix B. These two strategies

require m2 map tasks. We have implemented the first strategy for bzip2 compressed block matrix multiplication

in this this.

This implementation performs bzip2 compressed block by block matrix multiplication using HMR

STEP 1: Push the matrix A and matrix B into HDFS

STEP 2: Set the compressed input and compressed output format classes, Mapper and Reducer classes, file

paths and submit the job.

STEP 3: The mapper1 generates key, values pair’s compresses the mapper1 output and pass to reducer1 so that

each reducer gets one block of matrix.

STEP 4: The reducer1 performs block matrix multiplication.

STEP 5: The mapper1 generates key, values pair’s compresses the mapper1 output and pass to reducer1 so that

each reducer gets respected partial sum.

STEP 6: The reducer2 performs summation of all partial sums then compress the output and writes into HDFS.

Implementation of Graph Computations based on Bzip2 Compression

The graph nodes are numbered from zero to N − one per the penning order. [6]We tend to let A(x) denotes

successors set of node x that is the set . y such there's Associate in nursing arc from x to y and a pair. We

tend to represent the graph mistreatment with different words in the contiguity list and coded because the

sequence of contiguity lists of nodes zeros, one, etc., every Precedence of the out degree of the corresponding

node, to form it self-delimiting. It also suggests that we always represent successors list with the inventory gaps.

If A(x) = (a1, . . . ,ak), we'll represent it as (a1 − x,a2 − a1 − one,a3 − a2 − one, . . . ,ak − ak−1 − 1). To improve

the compression quantitative relation is to take advantage of similarity rather than representing the contiguity list

A(x) directly we are able to code it as a modified.

Differential compression:

Differential compressions are using in the web graph with variations of unit area A(y) is recorded in sequence of

copy blocks. As, associate copy list is processing with in a sequence of 1 and 0 blocks it also specify the blocks

length for every block. We always leave the last block from the blocks list and the block count is from out

[6]degree with a node reference. The block 1 is always refers a primary copy block.

The list of additional nodes is compressed as follows:

• An inventory of whole number intervals every interval is diagrammatic by its extremes left e area unit

compressed mistreatment with variations between every left extreme and therefore the previous right

extreme minus a pair of interval lengths area unit decremented by the brink minimum.

• An inventory of residuals compressed variations.

• Total input non-zero elements =N=N

• Sub matrix splits (in each dimension) =s=s

• Map-1 output records = Reduce-1 input records =Ns=Ns

 • Reduce-1 number of keys =s3=s3

• Reduce-1 records per key =Ns2=Ns2

• Reduce-1 output data volume = Map-2 input data volume ∝Ns∝Ns

• Reduce-2 output data volume ∝N∝N

VI. RESULTS AND DISCUSSIONS

Importance Of Compression Technique In Matrix And Graph Computations On Mapreduce

Framework

www.ijceronline.com Open Access Journal Page 5

Here, the input is sparse matrix with different size such as like n*n or 2000*2000 etc. the input values are tested

on MR cluster and by using with Bzip2 compression internally Hadoop can map and reduce the input value and

produces the processing time for every one and it also The components of software such as matrix data

generation, writing the matrices to storage, and reading matrix data as shown in figure 1.

“Figure 1: Elapsed time for compressed block by block matrix multiplication of Size 8000 using Bzip2 on

a single nodecluster

“Figure 2 Elapsed time for compressed block by block matrix multiplication of a matrix size 8000 using

compression on a single node of a Hadoop Cluster”

 The processing time is always less for compressed block by block matrix multiplication then without

compressed block by block matrix multiplication. Block by block matrix multiplication based on Bzip2 and MR

Importance Of Compression Technique In Matrix And Graph Computations On Mapreduce

Framework

www.ijceronline.com Open Access Journal Page 6

“Figure3. PROCESSING TIME COMPARISIONS ON HMR and BZIP2”

The elapsed time depicted as histogram on performance of the block by block matrix multiplication using Bzip2

compression and MapReduce of various matrix sizes. From the figure-3 we observed that for the matrix size

4000, the block by block matrix multiplication using Bzip2 compression takes 11% less elapsed time compare to

block by block matrix multiplication using Hadoop MapReduce as shown above figure 3.

The figure-4 Illustrates storage of number of bytes read for block by block matrix multiplication using Bzip2

and MapReduce. In general MapReduce takes 201MB space to read the data for matrix of size 4000, whereas by

using Bzip2 to store the same size matrix data that takes 45.5Mb of space. Therefore we are saving nearly 40%

of storage by using Bzip2 compression compared general MapReduce process.

“Figure 4. No.of Bytes read withBZIP2and HMR CLUSTER”

The results for sparse matrix vector multiplication computations for different problem sizes are shown in the

table. The components of software such as matrix data generation, sparse graph data are shown in the figure-5.

Importance Of Compression Technique In Matrix And Graph Computations On Mapreduce

Framework

www.ijceronline.com Open Access Journal Page 7

“Figure 5. Elapsed time for sparse matrix vector multiplication a sparse graph with 23035 nodes (Graph-

1) nodes in a two nodes of a Hadoop cluster with Bzip2 compression”.

The sparse graph and the size of the sparse matrix, sparsity of the sparse graph and elapsed time for each one are

indicated. We observed that for sparse matrix sizes of 2048 and 10240, the Sparse Matrix Vector multiplication

in two node cluster takes 55.72% as shown in figure-6.

“Figure 6. Elapsed time for sparse matrix vector multiplication a sparse graph with 23035 nodes (Graph-

1) nodes in a two nodes of a Hadoop cluster without compression”

VII. CONCLUSION

The compressed block by block matrix into matrix multiplication algorithms and sparse graph computations

based MPI Cluster and Hadoop Cluster framework. We described implementation approach using Compression

techniques software which handles Input/output (I/O) communication is fast in internal memory and slower in

the external memory for typical matrix computation algorithms. Block matrix partitioning techniques are

employed in our computations and the concurrent access to BDB is discussed. The results shown in the thesis

indicates that the compression algorithms on a single multi-core system gives 25% to 35% improvement in

reduction of elapsed time and 40% to 47% improvement in reduction of storage for large scale matrix and sparse

graph computations in a BIG DATA frame work.

REFERENCES
[1]. J. Dean and S. Ghemawat, ―MapReduce: Simplied Data Processing on Large Clusters,‖ in Proceedings of USENIX Symposium on

Operating Systems Design and Implementation, 2004

[2]. ―Ciscoglobal cloudindex: Forecast and methodology, 2013-2018.‖
http://cisco.com/c/en/us/solutions/collateral/serviceprovider/global-cloud- indexgci/Cloud Index White Paper.html, [Last accessed

November 2014].

http://cisco.com/c/en/us/solutions/collateral/serviceprovider/global-cloud-

Importance Of Compression Technique In Matrix And Graph Computations On Mapreduce

Framework

www.ijceronline.com Open Access Journal Page 8

[3]. M. Gaggero, S.Leo, S.Manca, F. Santoni, O. Schiaratura, and Zanetti, ―Parallelizing bioinformatics applications with mapreduce,‖
in CCA-08: Cloud Computing and its Applications, vol.19, pp.15-23, 2008.Apache Software Foundation. (2014 Mar.) Apache

Hadoop Project. Available: http://hadoop.apache.org.

[4]. Adnan Haider, Xi Yang, Ning Liu, Xian-He Sun, Shuibing He. "IC-Data: Improving Compressed Data Processing in Hadoop",
2015 IEEE 22nd International Conference on High Performance Computing (HiPC), 2015 Publication

[5]. Apache Software Foundation. (2014 Mar.) Apache Hadoop Project. Available: http://hadoop.apache.org.

[6]. The webgraph framework I", Proceedings of the 13th conference on World Wide Web-WWW04WWW04,2004Publication
[7]. M. Schatz, ―Cloudburst: highly sensitive read mapping with mapreduce,‖ in Bioinformatics, vol. 25, pp.1363-1369, 2009.

[8]. A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt,

[9]. S. Madden, and M. Stonebraker, ―A comparison of approaches to large-scale data analysis,‖ in SIGMOD’09, vol. 4, pp. iv-873- iv-
876, 2009.

Mandavamanjula " Importance of Compression Technique in Matrix and Graph Computations

on Mapreduce Framework, International Journal of Computational Engineering Research

(IJCER), vol. 8, no. 7, 2018, pp. 71-78.

http://hadoop.apache.org/

