B_{g}-Closed Sets In Topological Space**

A.Punitha Tharani\(^1\) T.Delcia\(^2\)

\(^1\)Associate Professor, Department of Mathematics, St.Mary’sCollege (Autonomous), Thoothukudi-628001, TamilNadu, India. Affiliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli-627012, India.

\(^2\) Research Scholar (Register No:12335), Department of Mathematics, St.Mary’s College (Autonomous), Thoothukudi-628001, TamilNadu, India. Affiliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli- 627012, India.

Corresponding Author: A.Punitha Tharani

ABSTRACT: In this paper we introduce and study new class of sets called \(B_{g**}\)-closed sets in topological spaces. Also we discuss some of their properties and investigate the relations between other closed sets.

KEYWORDS: b-closed, bcl(A), \(B_{g**}\)-closed, \(B_{g**}\)-open, g**-closed, g**-open, g*-open

I. INTRODUCTION

In 1970, Levine introduced the concept of generalized closed set and discussed the properties of sets, closed and open maps, compactness, normal and separation axioms. Later in 1996 Andrjevic gave a new type of generalized closed set in topological space called b closed sets.. A.A.Omari and M.S.M. Noorani made an analytical study and gave the concepts of generalized b closed sets in topological spaces. In this paper, a new class of closed set called \(B_{g**}\)-closed set is introduced to prove that the class forms a topology. Throughout this paper \((X,\tau)\) and \((Y,\sigma)\) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let \(A\subseteq X\), the closure of \(A\) and interior of \(A\) will be denoted by \(\text{cl}(A)\) and \(\text{int}(A)\) respectively, union of all b-open sets \(X\) contained in \(A\) is called b-interior of \(A\) and it is denoted by \(\text{bint}(A)\), the intersection of all b-closed sets of \(X\) containing \(A\) is called b-closure of \(A\) and it is denoted by \(\text{bcl}(A)\).

II. PRELIMINARIES:

Before entering into our work we recall the following definitions which are due to Levine.

Definition 2.1:

(1) a pre-open set \([11]\) if \(A\subseteq \text{int}(\text{cl}(A))\) and a preclosed set if \(\text{cl}(\text{int}(A))\subseteq A\).

(2) a semi-open set \([9]\) if \(A\subseteq \text{cl}(\text{int}(A))\) and semi-closed set if \(\text{int}(\text{cl}(A))\subseteq A\).

(3) a semi-preopen set \([2]\) if \(A\subseteq \text{cl}(\text{int}(A))\) and a semi preclosed set \([1]\) if \(\text{int}(\text{cl}(A))\subseteq A\).

(4) an \(\alpha\)-open set \([15]\) if \(A\subseteq \text{cl}(\text{int}(A))\) and an \(\alpha\)-closed set \([17]\) if \(\text{cl}(\text{int}(A))\subseteq A\).

(5) a b-open set \([3]\) if \(A\subseteq \text{cl}(\text{int}(A))\cup \text{int}(\text{cl}(A))\) and a b-closed set if \(\text{cl}(\text{int}(A))\cap \text{int}(\text{cl}(A))\subseteq A\).

(6) a generalised closed set (briefly g-closed) \([8]\) if \(\text{cl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is open in \((X,\tau)\).

(7) a g*-closed \([20]\) if \(\text{cl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is g-open in \((X,\tau)\).

(8) a g**-closed \([19]\) if \(\text{cl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is g*-open. The complement of g**-closed set is g**-open in \(X\).

(9) an generalised semi pre-closed set (briefly gsp-closed) \([6]\) if \(\text{spcl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is open in \((X,\tau)\).

(10) a generalized bclosed set(briefly gb-closed) \([16]\) if \(\text{bcl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is open in \(X\).

(11) a generalized \(\alpha\)-closed set (briefly \(g\alpha\)-closed) \([10]\) if \(\text{acl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is \(\alpha\)-open in \(X\).

(12) a weakly closed set (briefly \(W\)-closed) \([18]\) if \(\text{cl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is semi-open in \(X\).

(13) a generalized pre-closed (briefly gp-closed) \([12]\) if \(\text{pcl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is open in \(X\).

(14) a semi generalized closed set (briefly sg-closed) \([5]\) if \(\text{sccl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is semi open in \(X\).
A subset A of a topological space \((X,\tau)\) is called \(b^*\)-closed\([14]\) set if \(\text{int} (\text{cl}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is b-open.

A subset A of a topological space \((X,\tau)\) is called \(b^*\)-open set\([17]\) if \(A \subseteq \text{int} (\text{cl} (\text{int}(A))) \cup \text{cl}(\text{int}(A))\) and \(b^*\)-closed set if \(\text{cl}(\text{int}(A)) \cap \text{cl}(\text{int}(A)) \subseteq A\).

III. BASIC PROPERTIES OF \(B_{G^*}\)-CLOSED SETS:

Definition 3.1: A subset A of a topological space \((X,\tau)\) is called \(B_{G^*}\)-closed if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(G^*\)-open in \(X\). The family of all \(B_{G^*}\)-closed sets are denoted by \(B_{G^*} C(X)\).

Definition 3.2: The complement of \(B_{G^*}\)-closed set is called \(B_{G^*}\)-open set. The family of all \(B_{G^*}\)-open sets of \(X\) are denoted by \(B_{G^*} O(X)\).

Example 3.3: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{1\},\{2\},\{1,2\}\}\) then \(\{\emptyset,X,\{2\},\{3\},\{1,3\},\{2,3\}\}\) are \(B_{G^*}\)-closed sets and \(\{\emptyset,X,\{1\},\{2\},\{1,2\},\{1,3\}\}\) are \(B_{G^*}\)-open sets in \(X\).

Proposition 3.4: Every closed set is \(B_{G^*}\)-closed set.

Proof: Let \(A\) be a closed set in \(X\) such that \(A \subseteq U\). Let \(U\) be \(G^*\)-open. Since \(A\) is closed, \(\text{cl}(A) \subseteq U\). Hence \(A\) is \(B_{G^*}\)-closed set in \(X\).

Example 3.5: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{1\},\{2\},\{1,2\}\}\) then \(A=\{2\}\) is a \(B_{G^*}\)-closed set but not a closed set of \((X,\tau)\).

Theorem 3.6: Every \(b^*\)-closed set is \(B_{G^*}\)-closed set.

Proof: Let \(A\) be a \(b^*\)-closed set in \(X\) such that \(A \subseteq U\) and \(U\) is \(G^*\)-open. Since \(A\) is \(b^*\)-closed, \(\text{cl}(A) \subseteq U\). Hence \(A\) is \(B_{G^*}\)-closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.7: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{1\},\{2\}\}\) then \(A=\{1,3\}\) is \(B_{G^*}\)-closed but not a \(b^*\)-closed set.

Theorem 3.8: Every \(b^*\)-closed set is \(B_{G^*}\)-closed set.

Proof: Follows from the definition.

The converse of the above theorem need not be true as seen from the following example.

Example 3.9: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{1\}\}\) then \(A=\{1,3\}\) is \(B_{G^*}\)-closed but not a \(b^*\)-closed set.

Theorem 3.10: Every \(b^*\)-closed set is \(B_{G^*}\)-closed set.

Proof: Follows from the definition.

Example 3.11: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{1\},\{1,3\}\}\) then \(A=\{1,2\}\) is \(B_{G^*}\)-closed but not a \(b^*\)-closed set.

Theorem 3.12: Every \(sb^*\)-closed set is \(B_{G^*}\)-closed set.

Proof: Follows from the definition.

The converse of the above theorem need not be true as seen from the following example.

Example 3.13: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{2\},\{2,3\}\}\) then \(A=\{1,2\}\) is \(B_{G^*}\)-closed but not a \(sb^*\)-closed set.

Theorem 3.14: Every \(b_{G^*}\)-closed set is \(G^*\)-closed set.

Proof: Let \(A\) be a \(b_{G^*}\)-closed set in \(X\) such that \(A \subseteq U\) and \(U\) is open. Since every open set is \(G^*\)-open and \(A\) is \(B_{G^*}\)-closed, \(\text{cl}(A) \subseteq U\). Hence \(A\) is \(G^*\)-closed.

The converse implication need not be true as seen from the following example.

Example 3.15: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{1\}\}\) then \(A=\{1,3\}\) be the subset of \((X,\tau)\). Here \(A\) is \(G^*\)-closed but not a \(b_{G^*}\)-closed set of \((X,\tau)\).

Theorem 3.16: Every \(\alpha\)-closed set is \(B_{G^*}\)-closed set.

Proof: Let \(A\) be a \(\alpha\)-closed set in \(X\) such that \(A \subseteq U\) and \(U\) be \(G^*\)-open. Since \(A\) is \(\alpha\)-closed \(\text{cl}(A) \subseteq \text{cl}(A) \subseteq U\). Therefore \(\text{cl}(A) \subseteq U\). Hence \(A\) is \(B_{G^*}\)-closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.17: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{2\}\}\) then \(A=\{3\}\) be the subset of \((X,\tau)\). Here \(A\) is \(B_{G^*}\)-closed but not a \(\alpha\)-closed set of \((X,\tau)\).

Theorem 3.18: Every semi-closed set is \(B_{G^*}\)-closed.

Proof: Let \(A\) be a semiclosed set in \(X\) such that \(A \subseteq U\) where \(U\) is \(G^*\)-open. Since \(A\) is semiclosed \(\text{cl}(A) \subseteq \text{cl}(A) \subseteq U\). Therefore \(\text{cl}(A) \subseteq U\). Hence \(A\) is \(B_{G^*}\)-closed set.

The converse implication need not be true as seen from the following example.

Example 3.19: Let \(X=\{1,2,3\}\) with the topology \(\tau=\{\emptyset,X,\{3\}\}\) then \(A=\{2,3\}\) be the subset of \((X,\tau)\). Here \(A\) is \(B_{G^*}\)-closed but not semi-closed set of \((X,\tau)\).

Theorem 3.20: Every pre-closed set is \(B_{G^*}\)-closed.

Proof: Let \(A\) be a preclosed set in \(X\) such that \(A \subseteq U\) where \(U\) is \(G^*\)-open. Since \(A\) is preclosed,
bcl(A)⊆ pcl(A)⊆ U. Therefore bcl(A)⊆ U. Hence A is Bg* -closed set in X.
The reverse implication need not be true as seen from the following example.

Example 3.32: Let X={1,2,3} with the topology τ={∅,X,{1,2,3}} then A={1,2} is Bg* -closed but not a pre-closed set of (X,τ).

Theorem 3.31: Every g*-closed set is Bg* -closed.

Proof: Let A be a g*-closed set in X such that A⊆ U where U is g**-open. Since A is g*-closed, bcl(A)⊆ cl(A)⊆ U. Therefore bcl(A)⊆ U. Hence A is Bg* -closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.32: Let X={1,2,3} with the topology τ={∅,X,{1,2,3}} then A={1,2,3} is Bg* -closed but not a g*-closed set of (X,τ).

Theorem 3.32: Every ga-closed set is Bg* -closed.

Proof: Let A be a ga-closed set in X such that A⊆ U where U is g**-open. Since A is ga-closed, bcl(A)⊆ acl(A)⊆ U. Therefore bcl(A)⊆ U. Hence A is Bg* -closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.34: In example 3.11, A={1,2} is Bg* -closed but not a-closed.

Theorem 3.35: Every Bg* -closed set is gsp-closed set.

Proof: Let A be a Bg* -closed set in X such that A⊆ U where U is open in X. Since every open set is g**-open and A is Bg* -closed, bcl(A)⊆ acl(A)⊆ U. Hence A is gsp-closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.36: Let X={1,2,3} with the topology τ={∅,X,{1}} then A={1} is gsp-closed but not Bg* -closed set of (X,τ).

Theorem 3.37: A set A is Bg* -closed iff bcl(A)-A contains no nonempty g**-closed set.

Proof: Necessity: Let F be a g**-closed set of (x,τ) such that F⊆ bcl(A)-A. Then A⊆ F. Since A is Bg* -closed and F is g**-open, then bcl(A)⊆ X-F. This implies F⊆ X-bcl(A) so F⊆(X-bcl(A))∩(X-bcl(A))∩(bcl(A))=∅. Therefore F=∅.

Sufficiency: Assume that bcl(A)-A contains no nonempty g**-closed set. Let A⊆ U and U is g**-open. Suppose that bcl(A) is not contained in U, then bcl(A)∩ U is a nonempty g**-closed set of Bcl(A)-A which is a contradiction. Therefore bcl(A)⊆ U and hence A is Bg* -closed.

Theorem 3.38: A Bg* -closed set A is b-closed iff bcl(A)-A is b-closed.

Proof: If A is b-closed then bcl(A)-A =∅ Conversely suppose bcl(A)-A is b-closed in X. Since A is Bg* -closed by theorem 3.27, bcl(A)-A contains no nonempty g**-closed set in X. Then bcl(A)-A =∅.

Hence A is b-closed.

Theorem 3.39: If A and B are Bg* -closed then A∪B is also Bg* -closed.

Proof: Given that A and B are two Bg* -closed sets in X. Let A∪B⊆ U, U is g**-open set in X. Since A is Bg* -closed, bcl(A)⊆ U whenever A⊆ U, U is g**-open in X. Since B is Bg* -closed, bcl(A)⊆ U whenever B⊆ U, U is g**-open in X.

Corollary 3.30: The intersection of a Bg* -closed set and a closed set is a Bg* -closed set.

The above corollary can be proved by the following example.

Example 3.31: Let X={1,2,3,4} with the topology τ={∅,X,{1,2,4}}. {3} is the only closed set of (X,τ). Bg* -closed sets of (X,τ) are {1} , {2} , {3} , {4} , {1,2} , {1,3} , {1,4} , {2,3} , {2,4} , {3,4} , {1,2,3} , {1,3,4} , {2,3,4}.

The intersection of a Bg* -closed set and {3} is again a Bg* -closed set.

Remark 3.32: If A and B are Bg* -closed then their union need not be Bg* -closed.

The above remark can be proved by the following Example.

Example 3.33: Let X={1,2,3} with the topology τ={∅,X,{1,2}}. Here A={1} and B={2} are Bg* -closed. But A∪B={1,2} is not Bg* -closed set.

Theorem 3.44: If A is both g**-open and Bg* -closed then A is b-closed.

Proof: Since A is g**-open and Bg* -closed in X, bcl(A)⊆ A. But always A⊆ bcl(A). Then A=bcl(A). Hence A is b-closed.

Theorem 3.35: For x∈ X, the set X-{x} is Bg* -closed or g**-open.

Proof: Suppose X-{x} is not g**-open, then X is the only g**-open set containing X-{x}. This implies bcl(X-{x})⊆ X. Then X-{x} is Bg* -closed in X.

Theorem 3.36: If A is Bg* -closed and A⊆ B⊆ bcl(A) then B is Bg* -closed.

Proof: Let U be a g**-open set of X such that B⊆ U. Then A⊆ U. Since A is Bg* -closed then bcl(A)⊆ U. Now bcl(B)⊆ bcl(bcl(A))=bcl(A)⊆ U. Therefore B is Bg* -closed in X.

Theorem 3.37: Let A ⊆ Y ⊆ X and suppose that A is Bg* -closed in X, then A is Bg* -closed relative to Y.

Proof: Given that $A \subseteq Y \subseteq X$ and A is $B_{g^{**}}$-closed in X. To show that A is $B_{g^{**}}$-closed relative to Y. Let $A \subseteq Y \cap U$, where U is g^{**}-open in X. Since A is $B_{g^{**}}$-closed, $A \subseteq U$, implies $bcl(A) \subseteq U$. It follows that $Y \cap bcl(A) \subseteq Y \cap U$. Thus A is $B_{g^{**}}$-closed relative to Y.

Theorem 3.31 Suppose that $B \subseteq A \subseteq X$, B is $B_{g^{**}}$-closed set relative to A and that A is both g^{**}-open and $B_{g^{**}}$-closed subset of X, then B is $B_{g^{**}}$-closed set relative to X.

Proof: Let $B \subseteq G$ and G be an open set in X. But given that $B \subseteq A \subseteq X$, therefore $B \subseteq A$ and $B \subseteq G$. This implies $B \subseteq A \subseteq G$. Since B is $B_{g^{**}}$-closed relative to A, $A \subseteq bcl(B) \subseteq A \cap G$. Implies $(A \cap bcl(B)) \subseteq A \cap G$. Thus $(A \cap bcl(B)) \subseteq (G \cap bcl(B))^c$. Therefore $bcl(B)$ is g^{**}-closed in X, we have $bcl(A) \subseteq G \cup bcl(B))^c$. Also $B \subseteq A$ implies $bcl(B) \subseteq bcl(A)$. Thus $bcl(B) \subseteq bcl(A) \subseteq G \cup (bcl(B))^c$. Therefore $bcl(B) \subseteq G$ since $bcl(B)$ is not contained in $bcl(B)^c$. Thus B is $B_{g^{**}}$-closed set relative to X.

IV. B_{G^{}}CLOSED SET IS INDEPENDENT OF OTHER CLOSED SETS**

Remark 4.1: The following example shows that the concept of W-closed and $B_{g^{**}}$-closed sets are independent.

Example 4.2: Let $X=\{1,2,3\}$ with the topology $\tau=\{\emptyset, X, \{2\}\}$. In this topological space the subset $A=\{2\}$ is W-closed but not $B_{g^{**}}$-closed set. Also the subset $B=\{1\}$ is $B_{g^{**}}$-closed but not W-closed.

Remark 4.3: The following example shows that the concept of sg-closed and $B_{g^{**}}$-closed sets are independent.

Example 4.4: Let $X=\{1,2,3\}$ with the topology $\tau=\{\emptyset, X, \{1,2\}\}$. In this topological space the subset $A=\{1,2\}$ is sg-closed but not $B_{g^{**}}$-closed set. For the topology $\tau_2=\{\emptyset, X, \{1,2\}\}$ in this topological space the subset $B=\{1,3\}$ is $B_{g^{**}}$-closed but not sg-closed set.

Remark 4.5: The following example shows that the concept of gp-closed and $B_{g^{**}}$-closed sets are independent.

Example 4.6: Let $X=\{1,2,3\}$ with the topology $\tau_1=\{\emptyset, X, \{1\}\}$. In this topological space the subset $A=\{1,3\}$ is gp-closed but not $B_{g^{**}}$-closed set. For the topology $\tau_2=\{\emptyset, X, \{1\}\}$ in this topological space the subset $B=\{1\}$ is $B_{g^{**}}$-closed but not gp-closed set.

Remark 4.7: The following example shows that the concept of g-closed and $B_{g^{**}}$-closed sets are independent.

Example 4.8: Let $X=\{1,2,3\}$ with the topology $\tau=\{\emptyset, X, \{1,3\}\}$. In this topological space the subset $A=\{1\}$ is $B_{g^{**}}$-closed but not g-closed set. For the topology $\tau_2=\{\emptyset, X, \{1\}\}$ in this topological space the subset $B=\{2,1\}$ is g-closed but not $B_{g^{**}}$-closed set.

REFERENCES

A.Punitha Tharani "$B_{g^{**}}$-Closed Sets In Topological Space" International Journal of Computational Engineering Research (IJCER), vol. 08, no. 11, 2018, pp 57-60