
ISSN (e): 2250 – 3005 || Volume, 07 || Issue, 10|| October – 2017 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 22

Soft Computing Approaches for Automated Software Testing

Pradeep Kumar
Associate Professor, Department of CS&IT Maulana Azad National Urdu University, Hyderabad

Corresponding Author: Pradeep Kumar

Date of Submission: 20-10-2017 Date of acceptance: 02-11-2017

I. INTRODUCTION
Software testing is the process of testing the software product contributing to the delivery of high quality

software products, lower maintenance costs together with more accurate and reliable results. However, testing is

a very expensive process and consumes significant amount of effort. Therefore we require proper strategy to

carry out testing activities systematically and effectively. Thus testing strategy provides a framework or set of

activities which are essential for the success of the project [1-6]. A more appropriate definition can be described

as: “Testing is the process of executing a program with the intent of finding errors”. It is not possible to test the

software for all possible combinations of input cases. This way, no software would ever be released if the

developers were asked to certify that it was totally free of all errors. Although software testing is quite expensive

activity, but then launching of software without testing may lead to cost potentially much higher than that of

testing particularly in safety critical systems where human safety is involved. Therefore, testing continues to the

extent where it is considered that costs of the testing processes significantly outweigh the returns.

Software testing is indispensable for all software development. It is an integral part of software engineering

discipline. However, testing is effort-intensive and expensive activity. It is often accounted for more than 50%

of total development costs. Thus, it is imperative to reduce the cost and improve the electiveness of software

testing by automating the testing process. In fact, there has been a rapid growth of practices in using automated

software testing tools. Currently, a large number of software test automation tools have been developed and

become available in the market. Among many testing activities, test case generation is one of the most

intellectually demanding tasks and also of the most critical ones, since it can have a strong impact on the

effectiveness and efficiency of whole testing process [7-11].

A great amount of research effort in the past decades has been spent on test automation. As a result, several

techniques of test case generation, selection, prioritization and optimization has been evolved. On the other

hand, software systems have become more and more complicated, for example, with components developed by

different vendors, using different techniques in different programming languages and even running on different

ABSTRACT
Software testing is most widely used techniques for achieving high quality software. Software testing

is done to detect presence of faults, which upon execution causes software failure. Testing the

software is time consuming and expensive too. It consumes almost 50% of the software system

development resources. Software testing can be defined as process of verifying and validating

software to ensure that software meets the technical as well as business requirements as expected.

Verification is done to ensure that software meets specification and is close to structural testing

whereas validation is close to functional testing done by executing software under test. Testing can be

done either manually or automatically by using testing tools. It is empirically observed that automated

software testing is better than manual testing. Various techniques have been proposed for generating

test data and test cases automatically. Recently, lot of work is being done for test cases generation

using soft computing techniques like Fuzzy Logic, Artificial Neural Networks (ANN) and Genetic

Algorithm (GA). The main objective of this paper is: (a) study the pertinent issues with respect to

automated software testing (b) identify the essential attributes that contributes towards efficiency and

quality of automated software testing using Soft Computing Techniques © identify the quality metrics

for automated software testing

Keywords: Software Testing, Artificial Neural Network (ANN), Genetic Algorithm (GA), Fuzzy

Logic (FL), Software metrics

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 23

platforms. Although automation techniques for test case generation, selection, prioritization and optimization

start gradually to be adopted by the IT industry in software testing practice, there still exists a big gap between

real software application systems and practical usability of test automation techniques proposed by the

researchers.

Therefore for practitioners and researchers it is highly desirable to critically review the existing techniques,

recognizing the open problems and putting forward a perspective on the future of test automation with the help

of potentially available techniques such as soft computing, machine learning and deep learning.

1.1 Motivation
Software testing is one of the robust and most widely used techniques for achieving high quality software.

Software testing is done to detect presence of faults, which cause software failure. However, software testing is

a time consuming and expensive task. It consumes almost 50% of the software system development resources.

Software testing can also be defined as process of verifying and validating software to ensure that software

meets the technical as well as business requirements as expected. Verification is done to ensure that the software

meets specification and is close to structural testing whereas validation is close to the functional testing and is

done by executing software under test.

Broadly, testing techniques include functional (black box) and structural (white box) testing. Functional testing

is based on functional requirements whereas structural testing is done on code itself. Gray box testing is hybrid

of white box testing and black box testing. Testing can be done either manually or automatically by using testing

tools. It is found that automated software testing is better than manual testing. However, very few test data

generation tools are commercially available today. Various techniques have been proposed for generating test

data and test cases automatically. Recently, lot of work is being done for test cases generation using soft

computing techniques like fuzzy logic, Artificial Neural Networks (ANN) and Genetic Algorithm (GA) [12-17].

1.2 Software Testing
Software testing is one of the robust and most widely used techniques for achieving high quality software.

Software testing is done to detect presence of faults, which cause software failure. However, software testing is

a time consuming and expensive task. It consumes almost 50% of the software system development resources.

Software testing can also be defined as process of verifying and validating software to ensure that software

meets the technical as well as business requirements as expected. Verification is done to ensure that the software

meets specification and is close to structural testing whereas validation is close to the functional testing and is

done by executing software under test.

Broadly, testing techniques include functional (black box) and structural (white box) testing. Functional testing

is based on functional requirements whereas structural testing is done on code itself. Gray box testing is hybrid

of white box testing and black box testing. Testing can be done either manually or automatically by using testing

tools. It is found that automated software testing is better than manual testing. However, very few test data

generation tools are commercially available today. Various techniques have been proposed for generating test

data and test cases automatically. Recently, lot of work is being done for test cases generation using soft

computing techniques like fuzzy logic, Artificial Neural Networks (ANN) and Genetic Algorithm (GA) [12-17].

II. LITERATURE REVIEW
Fraser and Andrea (2013) have shown that optimizing whole test suites toward a coverage criterion is superior

to the traditional approach of targeting one coverage goal at a time. The results are significantly better overall

coverage with smaller test suites. While they have focused on branch coverage in this paper, the findings also

carry over to other test criteria. Consequently, the ability to avoid being misled by infeasible test goals can help

in overcoming similar problems in other criteria, for example, the equivalent mutant problem in mutation testing

[13-19].

The approach presented in this paper aims at producing small test suites with high coverage such that the

developer can add test oracles in terms of assertions. Although keeping the test suites small is helpful in this

respect, the oracle problem is still very difficult.

Srivastava and Tai-Hoon, (2009) applied the Genetic Algorithm technique to find the most critical paths for

improving software testing efficiency. The authors present a method for optimizing software testing efficiency

by identifying the most critical path clusters in a program. This is done by developing variable length Genetic

Algorithms that optimize and select the software path clusters, which are weighted in accordance with the

criticality of the path. The approach used by the authors is a Weighted Control Flow Graph to test data

generation using Genetic Algorithm. Path testing searches the program domain for suitable test cases that cover

every possible path in the software under test. Path testing selects a subset of paths to execute and find test data

to cover it. The authors conclude that Genetic Algorithm techniques can be applied for finding the most critical

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 24

paths for improving software testing efficiency and the Genetic Algorithms also outperform the exhaustive

search and local search techniques. The experiments conducted by the authors were based on small examples.

The concept of dominance relations between the nodes of Control Flow Graph to reduce the software testing

cost has been proposed by Ghiduk and Girgis, (2010). A new fitness function is defined using dominance

relationship to evaluate the generated test data. Experiments have been carried out to evaluate the effectiveness

of the proposed GA technique as compared to the Random Testing (RT) technique, and to evaluate the

effectiveness of the new fitness function and the technique used to reduce the cost of software testing. The

results showed that the proposed GA technique outperformed the RT technique. The proposed GA and RT

techniques were applied to object oriented C++ programs. Testing on other type of programs, like structure

oriented program, should be done for wide acceptability of the results.

Yong, (2009) presented an approach of generating test data for a specific single path based on genetic

algorithms. A similarity between the target path and execution path with sub path overlapped is taken as the

fitness value to evaluate the individuals of a population and drive GA to search the appropriate solutions. The

authors conducted several experiments to examine the effectiveness of the designed fitness function, and

evaluated the performance of the function with regards to its convergence ability and consumed time. Results

show that the function performs better as compared with the other two typical fitness functions for the specific

paths employed by the authors.

Michael, (1997) proposed that the combinatorial optimization techniques when used with Genetic algorithms

solve problems involving the simultaneous satisfaction of many constraints like, condition based decision

coverage. The authors have performed experiments for comparing random test data generation with GA by

applying genetic search. The genetic search outperformed random test generation, but the authors‟ experiment

did not include the implementation of path selection heuristic for the generation of test data for programs with

procedures.

Nirpal and Kale, (2010) have compared the software test data for automatic path coverage using genetic

algorithm with Yong Chen approach (Chen Yong, 2009) of generating test data for path testing. They proved

that the genetic algorithm approach outperforms the Yong Chen approach. The genetic algorithm is found useful

in reducing the time required for lengthy testing by generating the meaningful test cases for path testing. The

genetic algorithm is required to be build for structural testing for reduce execution time by generating more

suitable test cases.

Faezeh (2005) focused on the use of independent path to reduce time and on precisely monitoring the execution

trace of the program. Genetic algorithm is applied with improved parameters for test cases designed to better

detect bugs of tested program. The genetic algorithm based tester fulfills test criteria by manner of evolutionary

computation. Genetic Algorithm method with dynamic fitness function and stopping criterion is used for

effective testing and low cost identification of infeasible path. The approach used suffers from the disadvantage

about dynamic aspect of testing, as the stopping criteria used can‟t specify actual number of generations, i.e. in

some cases, the tester is exited based on waiting time, while the stopping criterion is not satisfied.

Last Mark., (2005) stated that Fuzzy-based Age Extension of Genetic Algorithm is more efficient to generate

black box test cases than Simple Genetic Algorithm because the probability of finding the error with the former

approach is much more as compared to the latter, which results in saving a lot of resources for the testing team.

The number of distinct solutions produced is significantly higher, which is useful for investigation and

identification of the error itself by the software programmers. There is need to apply the proposed methodology

to test real programs and to develop evaluation functions for the evolved test cases.

Genetic Algorithm approach has been used by Gupta and Rohil, (2008) to generate test cases for Object

Oriented Software where statements are represented in the form of a tree. The test cases are encoded using

various strategies and objective functions. Test cases for testing object oriented software include test programs

which create and manipulate objects in order to achieve a certain test goal. The approach described by them

facilitates the automatic generation of object oriented test program using genetic algorithms. The approach has

been used to generate the test cases for Java classes to prove the concept.

Rajappa, (2008) proposed graph theory based genetic approach to generate test cases for software testing. In this

approach the directed graph of all the intermediate states of the system for the expected behavior is created. The

base population of genetic algorithm is generated by creating a population of all the nodes of the graph. A pair

of nodes referred to as parents are then selected from the population to perform crossover and mutation on them

to obtain the optimum child nodes. The process is continued until all the nodes are covered. This process is

followed for the generation of test case in the real time system. The technique is more concrete in case of

network testing or any other system testing where the predictive model based tests are not optimized to produce

the output.

As proposed by Berndt, (2003) Genetic algorithm is used to breed software test cases. The Genetic algorithm

includes a fossil record that records past organism, allowing any current fitness calculation to be influenced by

the past generations. Factors developed for fitness functions are novelty, proximity and severity. Novelty is a

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 25

measure of the uniqueness of a particular test case, Proximity is the measure of closeness to other test cases that

resulted in system failures and Severity is the measure of seriousness of system error. Interplay of these factors

produces complex search behavior.

Rauf, (2010) have presented a Graphical User Interface (GUI) testing and coverage analysis technique entered

on genetic algorithms in order to exploit the event driven nature of GUI. Event-flow graph technique is used in

the field of automated GUI testing. Just as the control-flow graph, GUI that represents all possible execution

paths in a program, event-flow model, in the same way, represents all promising progressions of events that can

be executed on the GUI. Genetic algorithm searches for the best possible test parameter combinations according

to predefined test criterion, like coverage function that measures how much of the automatically generated

optimization parameters satisfy the given test criterion.

III. TESTING METHODOLOGY AND TOOLS
As the software industry grows, it becomes more and more competitive and advanced for businesses to produce

good quality software. The production of the software and the quality together must be increased for businesses

to produce the best possible software. Testing, therefore, has to be done throughout the process of programming

the software. Manual testing takes too long and can consume a lot of time. With the aid of testing tools this can

increase efficiency and get the deadlines met. There are different methodologies that can be used when

implementing testing tools. The testing methodologies can be used together or individually. It all depends on

what you are testing as they provide better resources for different tasks. Below are commonly used testing tools

described as below [7-10]:

S.No. Methodology Description Commonly used

Testing Tool

1 Unit Testing Unit testing is the process of taking a module and executing it in
isolation from the remaining software modules by prepared test cases

and comparing the actual results with the predicted results through

specification and design of the module. The purpose of unit testing is
to determine whether each independent module is correctly

implemented or not.

In context of procedural programming, the unit can be any individual
function or a procedure which is written in the same language as the

production code to be tested.

JUnit
Nested Runner

Junit dataprovider

JUnit is a very popular
testing tool for unit testing

2 Integration
Testing

The integration testing is performed to ensure that interface between
modules is working correctly. Main purpose of integrating testing is

the interface to check whether the parameters match both sides as to

type, their permissible range, meaning and utilization of the
independent modules.

There are three main integration strategies to interface between the

modules such as top-down approach, bottom-up approach and
sandwich approach. Top-down integration proceeds down the

invocation hierarchy adding one module at a time until the entire tree

level.
Bottom-up approach works from the bottom to the top in a tree level

structure. Sandwich is the hybrid category and starts from top and

bottom concurrently and meeting somewhere in the middle.

Quick Test Professional
(QTP) is an automated

functional Graphic User

Interface (GUI).
QTP can test many

applications such as Java,

visual basic application, .net
and many more

HPE Unified Functional

Testing (HP- UFT)

3 System Testing During system testing, we need to evaluate a number of attributes of

the software that are vital to the user such as security, compatibility

and dependentability. Testing the system‟s capabilities is more
important than testing its components. Therefore we should focused

on finding failures those are catastrophic rather than the failures that

are merely annoying.

Functional Testing Tools

such as Salenium, Watir,

WatIN, WET, SAMIE,
WebInject are commonly

used automated tools

4 Validation
Testing

Validation testing is performed after unit and integration testing is
over. The software is tested as a complete product where we want to

test the software with the perspective of the customer and would like

to ensure that the software meets the expectations of the customers.
We also check all the entries of validation criteria described in

software requirement specifications (SRS) of SDLC. Further in order

to improve the confidence level and familiarity with the software, the
involvement of customers is required during validation testing. Some

well-known and commonly used methods for maximizing the

customer‟s involvement are alpha, beta and acceptance testing, the
method of validation techniques to involve the customers during

testing.

In addition to this, the IEEE
has developed a standard

(IEEE std. 1059-1993)

entitled “IEEE guide for
software verification and

validation” to provide

specific guidance about
planning and documenting

the tasks required by the

standard so that the
customer may write an

effective plan [IEEE93].

5 White Box
Testing

Also known as clear box testing, glass box testing, translucent box
testing or structural testing. It uses the internal perspective of the

system and then designs test cases based on this internal structure.

Using this method, the code itself and all the conditions, statements
and paths along with it are tested. Programming skills are required for

Code Review or
Walkthrough

Path Analysis

Code coverage analysis

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 26

noticing all the paths through the software. White box testing does
many things such as analyzing the data flow, control flow,

information flow and coding practices. Testing plans are made

according to the details of the software implementation, such as
programming language, logic, and styles. Test cases are derived from

the program structure.

6 Black Box
Testing

The black-box approach is a testing method in which test data are
derived from the specified functional requirements without regard to

the final program structure. It is also termed data-driven, input/output

driven, or requirements-based testing. Because only the functionality
of the software module is of concern, black-box testing also mainly

refers to functional testing. Testing method emphasized on executing

the functions and examination of their input and output data only.
The tester treats the software under test as a black box, only the

inputs, outputs and specification are visible, and the functionality is

determined by observing the outputs to corresponding inputs. In
testing, various inputs are exercised and the outputs are compared

against specification to validate the correctness.

Webdriver
Appinum Testing

Applitools Eyes Testing of

Mobile apps, web and
desktop apps

HP QTP

7 Regression

Testing

Testing the application as a whole for the modification in any module

or functionality. Difficult to cover all the system in regression testing

so typically automation tools are used for these testing types.

The regression testing may take place once the programmer has tried
to fix a problem or has purposely added in code to give out errors.

GUI: Auto Testers for

Windows

OTF – Object Testing

Framework
QTP HP-UFT

8 Web based

Testing

This type of testing is used over web based applications. It tests for

bugs and problems that appear within the application. An example of

this may be that once a problem is detected such as having dead links,
line checking or html validation then it provides help in repairing this

problem.

Selenium

LoadTracer tool is used for

web servers and to analyze
the performance and

characteristics of the web

application. LoadTracer is a
GUI tool and checks the

loading and performance

and scalability of the web
application.

9 Security

Testing

Security of the system testing can help against unauthorized access,

hacking and any coding damage which deals with the code of
application. Software quality, reliability and security are tightly

coupled. Flaws in software can be exploited by intruders to open

security holes. Many critical software applications and services have

integrated security measures against malicious attacks. The purpose

of security testing of these systems include identifying and removing

software flaws that may potentially lead to security violations, and
validating the effectiveness of security measures.

IBM Internet security

scanner
HP WebInspect

DevInspect

SPIKE

Metasploit

Wireshark

Back Track Retina and
Quality Assurance (QA)

inspect

10 Functional
Testing

This type of testing ignores the internal parts and focus on the output
is as per requirement or not. Black-box type testing geared to

functional requirements of an application.

Silk Test
Test Complete

Quick test Pro

Rational Robo, SoapTest
RFT, BadBoy

11 Performance

Testing

It is similar to using web tools but has its own applications. An

example program is LoadTracer which is a GUI tool and checks the

loading and performance and scalability of the web application.

LoadTracer

SilkRealizer

Cloud Test
Load Storm

12 Database

Testing

Database testing tools are very good to use for checking and testing

databases. It helps with creating tables and data to test the database.

SQL DB Validator performs

database and data cube
verification and validation.

13 Static Testing

Tool

It checks the systems software and does not execute the program

itself

Lint, Testbed, ParaSoft

VERACODE

CAST

14 Communication

Testing

Communications testing tools are used for communication purposes.

It can work wirelessly, through sockets and SOAP, GPRS and other

network communication methods.

Cheetah - It allows you to

proactively test and monitor

your VoIP and VoD
performance whilst it

maintains the integrity of

other critical applications.

15 Requirement

Management

This is used to analyze the requirements for testing, maintaining and

logical inconsistencies. This helps the tester to validate the program

correctly.
Requisite Pro is a management tool to help improve communication

goals and enhance collaborative development and increase the quality

of applications before deploying.

IBM.s

Requisite Pro

16 Performance
Testing

Performance evaluation of a software system usually includes:
resource usage, throughput, stimulus-response time and queue lengths

detailing the average or maximum number of tasks waiting to be

serviced by selected resources. Typical resources that need to be

The typical method of doing
performance testing is using

a benchmark, workload or

trace.

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 27

considered include network bandwidth requirements, CPU cycles,
disk space, disk access operations, and memory usage. The goal of

performance testing can be performance bottleneck identification,

performance comparison and evaluation, etc.

Jmeter
FunkLoad

17 Reliability

Testing

Software reliability refers to the probability of failure-free operation

of a system for a specified period of time in a specified environment.

Testing is an effective sampling method to measure software
reliability. Guided by the operational profile, software testing (usually

black-box testing) can be used to obtain failure data, and an

estimation model can be further used to analyze the data to estimate
the present reliability and predict future reliability.

SoRel, CASRE, SARA,

ESTM, RGA ReliaSoft

Based on the estimation, the
developers can decide

whether to release the

software, and the users can
decide whether to adopt and

use the software. Risk of

using software can also be
assessed based on reliability

information

18 Acceptance
Testing

Perform subset of system test as part of demonstration of user
acceptance test.

Normally this type of testing is done to verify if system meets the

customer specified requirements.

Load performance &
Simulation Tools: User or

customer do this testing to

determine whether to accept

application or not

19 End-to-End

Testing (E2E)

It is similar to system testing, involves testing of a complete

application environment in a situation that mimics real-world use,

such as interacting with a database, using network communications,
or interacting with other hardware, applications, or systems.

White Box testing or Black

box testing can be applied

for E2E testing depending
upon the situational context

20 Load Testing Its performance testing to check system behavior under load. Testing

an application under heavy loads, such as testing of a web site under a
range of loads to determine at what point the system‟s response time

degrades or fails.

Web Load Professional

HP Load Runner
Load Tracer

Forecast VPerformer

21 Stress Testing System is stressed beyond its specifications to check how and when it

fails. Performed under heavy load like putting large number beyond
storage capacity, complex database queries, continuous input to

system or database load

Web Load

LoadView
Apache Jmeter

HP Load Runner

22 Usability
Testing

User-friendliness check. Application flow is tested, Can new user
understand the application easily, Proper help documented whenever

user stuck at any point. Basically system navigation is checked in this

testing.

Optimizely, Crazy Egg
TryMyUI, Qualaroo,

Usabilla, Feedback Army

UserFeel

IV. SOFT COMPUTING TECHNIQUES
Soft Computing methodologies are designed to model and enable solutions to real world problems, which are

not modelled or too difficult to model mathematically. Soft Computing is basically optimization technique to

find solution of problems which are very hard to answer. Soft computing is a consortium of methodologies that

provides flexible information processing capability for handling real-life ambiguous situations [9-11].

Soft Computing aims to exploit the tolerance for imprecision, uncertainty, approximate reasoning and partial

truth in order to achieve tractability, robustness and low-cost solutions. The guiding principle behind soft

computing is to devise methods of computation that lead to an acceptable solution at low cost, by seeking for an

approximate solution to an imprecisely or precisely formulated problem

4.1 Fuzzy Logic
Fuzzy Logic process the data by allowing partial set membership rather than crisp set membership or non-

membership. Fuzzy Expert System consists of fuzzification unit that converts crisp values into fuzzified input. It

consists of inference engine that contains if then else rules and a defuzzification unit to convert the result in a

readable form. Fuzzy Logic incorporates a simple, rule-based IF X AND Y THEN Z approach to a solving

problem rather than attempting to model a system mathematically.

4.2 Neural Network
A Neural network, more properly referred to as an 'artificial' neural network (ANN), is a computing system

made up of a number of simple, highly interconnected processing elements, which process information by their

dynamic state response to external inputs. The representation of knowledge is distributed over these connections

and "learning" is performed by changing certain values associated with such connections, not by programming.

The ability of Artificial Neural Networks (ANNs) to model the complex non-linear relationships and capability

of approximating any measurable function make them attractive prospects for solving complex tasks without

having to build an explicit model of the system.

A neural network is the way of learning mechanism designed in a similar fashion in which the brain performs a

given task. It consists of large number of simple processing elements called neurons connected to each other by

direct communication links associated with weight. The neural network is trained through supervised learning

method by providing network with a series of sample inputs and comparing the expected sample output with

responses over a prespecified period of time. The training procedure carried out until network is able to provide

expected and convincing responses. The neurons are arranged into layers and the patterns of connection within

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 28

and in-between layers constitute the architecture of network. The number of layers in the network can be either

single or multiple based on the number of layers of weighted interconnected links between the particular slabs of

neurons.

4.2.1 Artificial Neural Network Modeling

A neural network is the learning mechanism, which can be utilized for reliability prediction in similar fashion in

which the brain performs a given task. It consists of large number of simple processing elements called neurons

connected to each other by direct communications/links associated with some weight. The neural network can

be trained through supervised or unsupervised learning method by providing network with a series of sample

input and comparing the expected sample output with the responses over a specified period of time. The training

procedure carried out until network is able to provide expected responses. The neurons are arranged into layers

and the patterns of connection within and in-between layers constitute the architecture of network.

The number of layers in the network can be either single or multiple based on the number of layers of weighted

and interconnected links between the particular slabs of neurons [9]. Mathematically, the single layer neural

network model can be defined as:

1

n

k k i k ii
n e t b x w


   and ()

k k
y f n e t (1)

where n is number of input elements i.e., x1, x2, x3, …………. xn

f() = activation function used for processing the input signals and generating the final output of the neuron; ∑ =

summation function

wkj =a set of connecting links associated with weighs wk1, wk2, wk3 , wk4, ………….wkn .

Yk = output of the previous layer of network

Thus, ANN is an information processing system composed of neurons, which can be applied for mapping past

failure behavior of software to predict future failure trends shown as in Figure1.

 Input Layer Hidden Layer

 x1 wk1 Summation fn.

 x2 wk2

 : yk Output

 Layer Layer

 xn wkn

 bk (Bias) Activation function

Figure1. Processing of the neuron in feed forward multilayer network

The input signal of neural network is transmitted by using connection links associated with weight, which is

multiplied with incoming signal for the neural networks The output signal is obtained by applying activation

function to the input signal. The neural network can be either single layer or multilayer networks.

4.2.2 System Architecture

The system architecture of proposed neural network model comprised of three component neural network where

each component neural network is three-layer single-input single-output feed forward neural network (FFNN)

containing Nh nodes in the hidden layer. The proposed neural networks are trained using supervised learning

algorithms by adjusting different weights connecting these layers. The output of component neural network is

combined all together to produce final output of the model.

4.2.3 Components of ANN Architecture

The architecture of proposed model using back propagation algorithm is shown in figure2. The sigmoidal

function f(x) is taken as an activation function, which can be written as:

 

1
()

1
x

f x
e





 (2)

where σ is the learning rate used for the adjustment of weights.

There are millions of simple processing elements or neurons in the brain, linked together in a massively parallel

manner. This is believed to be responsible for the human intelligence and discriminating power. Neural

Networks are developed to achieve biological system type performance using a dense interconnection of simple

processing elements analogous to biological neurons.

 ∑ xiwi

 f(network)

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 29

 h1

 x1(t) y1(t)

 x2(t) y2(t) yk(t)

 h2

 xn(t) yn(t)

 hn

 Input Hidden Output

 Layer Layer Layer

Figure2. Architectural view of proposed neural network model

Neural Networks are information driven rather than data driven. Typically, there are at least two layers, an input

layer and an output layer. One of the most common networks is the Back Propagation Network (BPN) which

consists of an input layer, and an output layer with one or more intermediate hidden layers. The major issues of

concern today are the scalability problem, testing, verification and integration of neural network systems into the

modern environment. Neural network programs sometimes become unstable when applied to larger problems.

Also there are some more practical problems like: the operational problem encountered when attempting to

simulate the parallelism of neural networks. Since the majority of neural networks are simulated on sequential

machines, giving rise to a very rapid increase in processing time requirements as size of the problem expands.

Networks function as "Black Boxes" whose rules of operation are completely unknown [9].

4.2 Genetic Algorithms
GAs is general-purpose search algorithms, which uses principle inspired by natural genetics to evolve solutions

to problems [25-28]. GA starts off with population of randomly generated chromosomes, each representing a

candidate solution to the concrete problem by applying genetic operators based on the genetic processes

occurring in nature. GAs had a great measure of success in search and optimization problems due to their robust

ability to exploit the information accumulated about an initially unknown search space. Particularly GAs

specialize in large, complex and poorly understood search spaces where classic tools are inappropriate,

inefficient or time consuming.

GA's basic idea is to maintain a population of chromosomes. This population evolves over time through a

successive iteration process of competition and controlled variation. Each state of population is called

generation. Associated with each chromosome at every generation is a fitness value, which indicates the quality

of the solution, represented by the chromosome values. Based upon these fitness values, the selection of the

chromosomes, which form the new generation, takes place. Like in nature, the new chromosomes are created

using genetic operators such as crossover and mutation.

4.2.1 Mechanism of GA

The fundamental mechanism consists of the following stages:

a. Generate the initial population randomly

b. Select the chromosomes with the best fitness values

c. Recombine selected chromosomes using crossover and mutation operators

d. Insert offspring into the population

e. If stop criterion is satisfied, return to the chromosome(s) with the best fitness. Otherwise, go to 2
nd

 step (b)

In GA, the population is defined to be the collection of individuals. A population is a generation that undergoes

under changes to produce new generation. Like nature, GAs have also collection of several members to make

population healthy. A chromosome that is a collection of genes is correspondence to individual of population.

Each individual chromosome represents a possible solution to the optimization problem. The dimension of the

GA refers to the dimension of the search space which equals the number of genes in each chromosome.

4.2.2 Representation of Chromosomes

The representation of chromosomes in GAs has very deep impact on the performance of GA-based function.

There are different methods of representation of chromosomes like binary encoding, value encoding,

permutation encoding, tree encoding etc. The most commonly used encoding is binary encoding proposed by

Holland. In this method, the value of individual is encoded as bit string consists of binary values either 0 or 1.

Each chromosome of population consists of same length of binary string [21-27].

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 30

V. MEASUREMENT TECHNIQUES
Two well-known and widely used reliability metrics are categorized according to the number of failures in a

time period and time between failures. Another important metric, fault and failure metrics describe the product

reliability characteristics such as mean time between failures (MTBF) and failure density (FD).The main goal of

evaluating fault and failure metrics is to determine when the software is attaining failure-free execution [9],

[10].

The number of faults found during testing and failures reported by users after delivery are collected,

summarized and analyzed in order to achieve better reliable software. Thus, testing strategy is highly relative to

the effectiveness of fault metrics, since if the testing scenario does not cover full functionality of the software,

then it may pass all tests and yet be prone to failure after delivery. Usually, failure metrics are based upon

customer information regarding failures found after release of the software. The failure data collected is

therefore used to calculate MTBF and FD to measure the software reliability. The current practices of software

reliability measurement can be divided into three broad categories such as product metrics, process metrics and

project metrics described as follows:

5.1 Product metrics

Product metrics describe the characteristics of software product in terms of size, complexity, design features,

performance, efficiency, reliability, portability, etc.

5.2 Process metrics

Process metrics describe the effectiveness and quality of the processes that produce the software products.

Example of process metrics includes such as effort estimation required in the process, time to produce the

product, effectiveness of defect removal during development, number of defects found during testing, maturity

of the process.

5.3 Project metrics

Project metrics describe the project characteristics and execution in terms of several parameters including

number of software developers, staffing pattern over the life cycle of the software, cost, schedule and

productivity. Software reliability metrics can help to improve software engineering processes through

quantitative evaluation of software technologies, tracking software development status and conducting

maintenance activities.

5.4 Useful Metrics for Software Reliability

In this section we are focused on intrinsic product quality metrics and customer satisfaction metrics. Intrinsic

product quality is measured using number of faults in the software or by estimating that how long the software

can run before encountering a failure. Some useful metrics applied for test automation are described as follows:

5.4.1 Mean Time to Failure (MTTF)

The MTTF metric measures the time between failures (TBF) and usually applied in various critical safety

systems such as ATC (air traffic control system) and space shuttle control systems. Thus MTTF metric is more

appropriate for special-purpose and safety critical software systems.

Mean Time to Failures (MTTF):
1

M T T F




Where λ, is the failure intensity function.

5.4.2 Failure Rate (FR)

The failure rate or failure intensity is defined as the number of failures per unit time. Thus, fault and failure

metrics describes the product reliability characteristics such as Mean time between failures (MTBF) and Failure

density (FD).

N u m b er o f F a ilu re s

E x ecu tio n tim e
F R 

5.4.3 Defect Density Rate (DDR)

Defect density rate metric measures the defects relative to the software size using Source Lines of Codes

(SLOC) and Function Points (FPs). Thus defect density is a measure of the total known defects found in

software divided by the size of software being measured. The total number of known defects is the count of

defects identified against particular software during a particular time period. The time period may be

represented in terms of no. of hours/days/weeks/months/year.

T o ta l n u m b er o f k n o w n d e fec ts

S ize
D D R 

DDR is most often used in many commercial software systems such as billing systems, online reservation

system, office automation and other MIS (management information systems). DDR can be used to compare the

relative number of defects in various software components or different layers of the proposed model in this

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 31

work. Another important use of DDR is to compare subsequent releases of a product in order to track the impact

of defect reduction and quality improvement activities.

5.4.4 Total Released Defects (TRD)

N u m b er o f re leased d e fec ts

T o ta l S L O C
T R D 

Thus, identifying defect prone software or components allows the concentration of limited resources in the areas

with highest potential return on the investment for any commercial applications.

5.4.5 Failure Intensity Improvement Factor (FIIF)

The reliability growth as a result of testing such as failure intensity improvement factor is defined as follows:

V a lu e o f fa i lu re in te n s ity a t th e s ta r t o f te s t in g

V a lu e o f fa i lu re in te n s ity a t th e e n d o f te s t in g
F IIF 

5.4.6 Reliability Growth Factor (RGF)

To find the growth of reliability from proposed model‟s (software reliability growth model for three tier client

server system) viewpoint, the reliability growth factor is defined as follows:

F in a l t im e b e tw e e n fa i lu re s

In it ia l t im e b e tw e e n fa i lu re s

1 0 0
ln

R G F

N u m b e r o fp a s s e d T e s ts
P a s s e d T e s tc a s e s P e r c e n ta g e

T o ta u m b e r o fte s te x e c u te d



 
  
 

for

TBF models

In itia l fa ilu re ra te

F in a l fa ilu re ra te
R G F  , for FC fault count model

5.4.7 Customer Oriented Metrics

The customer oriented metric is another product quality metric used by developers and industry

professionals to measure the problems encountered by the customers during the operational phase. The

problem metric can be expressed in terms of problems per user month (PUM) computed as follows:

T o ta l n o . o f p ro b le m s re p o rte d b y th e c u s to m e rs fo r a t im e p e rio d

T o ta l n u m b e r o f lic e n s e m o n th s o f th e so f tw a re d u rin g th e p e rio d
P U M 



where, Number of license-months = (Number of install licenses of the software) * (Number of

months in the calculation period)

PUM is calculated for each month after the software is released to the end customer and we intend to achieve

low value of PUM.

The customer problems metric can be regarded as an intermediate measurement between defects measurement

and customer satisfaction. However, to reduce the customer problems we need to reduce the functional defects

in the products together with other attributes such as usability, documentation, problem rediscovery etc.

5.4.8 Customer satisfaction

Customer satisfaction can be measured by using customer survey on five-point scale such as customer is highly

satisfied, customer is satisfied, neutral, unsatisfied and strongly unsatisfied. Further, based on five-point scale,

several other metrics are designed as follows: (customer satisfaction index CSI on the scale of 0 to 10)

a. Percentage of highly satisfied customers are categorized as very happy customers (above 7 point scale)

b. Percentage of satisfied customers are categorized as happy customers (between 5 to 7)

c. Percentage of not satisfied customers are categorized as unhappy customers (between 3 to 5 point scale)

d. Percentage of neutral customers are categorized as normal customers who is neither happy nor unhappy but

they are utilizing and continuing with software systems (between 2 to 3 point scale)

e. Strongly unsatisfied customers are categorized as very unhappy customers (below 2 point scale)

In practice we tend to minimize the percentage of not satisfied customers together with neutral and completely

unsatisfied customers.

5.4.9 Failure Behavior metrics

Failure behavior of software generally depends on the environment and the number of faults present in the

program during execution. In classical reliability theory, failure occurrences are expressed as random variables

due to the unpredictable nature of fault introduction by the programmers, and unpredictable conditions under

which programs are executed. There are four types of metrics commonly used to represent failure occurrences

using time variable such as time of failures, time interval between failures, cumulative failures occurred up to a

specified time and failures occurred in a specified time interval.

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 32

5.4.10 Reliability metrics

Another very important and useful metrics are software reliability metrics which are derived from the failure

occurrence and failure datasets. Some commonly used well-known reliability metrics are summarized in Table1

[1],[6],[9],[10].

Table1. Software reliability metrics
Metrics Description

Absolute

metrics

Fundamental metrics for software testing includes: Total number of test cases generated, Number of test cases passed

/ Failed, Number of test cases blocked, number of defects found/accepted/rejected/deferred, number of defects found

after release of the product etc.

POFOD Probability of Failure on Demand (POFOD) is the metric applied to any software systems where critical service

request are happened in an unpredictable way, or when there is a long time interval between consecutive requests.

ROCOF Rate of Occurrence of Failures (ROCOF) is a robust metric used in software systems where (critical) services are

demanded in more regular way.

MTTF Mean Time To Failure (MTTF) is very common metric employed to software systems involving long transactions,

during which a guarantee of service continuity and delivery is expected. MTTF is the average time it takes for a

system to fail.

AVAIL Availability is the likelihood that the system will be working at a given time. That is, AVAIL is a metric for software
systems where continuous service delivery is a major concern.

MTTR MTTR (Mean Time To Recover) is the average time for the system to recover; correspond to the average time to

repair the system.

MTBF MTBF (Mean Time Between Failure) is the average time between consecutive system failures. MTBF is equal to the
sum of the MTTF and the MTTR. That is,

MTBF = MTTF + MTTR

Table2. Testing Metrics for Monitoring Progress & Quality Assurance

SNo. Testing Tracking Metrics

1 1 0 0
N u m b er o f p a ssed T es ts

P a ssed T es t C a ses P ercen ta g e
T o ta l u m b er o f te s t execu ted

   
     

    

2
1 0 0

N u m b er o f fa iled T es ts
F a iled T es t C a ses P ercen ta g e

T o ta l u m b er o f te s t execu ted



   
     

    

3
1 0 0

N u m b er o f B lo cked T es ts
B lo cked T es t C a ses P ercen ta g e

T o ta l u m b er o f te s t execu ted



   
     

    

4
1 0 0

D e fe c ts F ix e d

F ix e d D e fe c ts P e rc e n ta g e

D e fe c ts r e p o r te d





   



 
 
 

5
1 0 0

D e fe c ts d e fe r re d fo r fu tu re re le a se s

D e fe c ts D e fe r re d P e rc e n ta g e

T o ta l D e fe c ts r e p o r te d



   

   



 
 
 

6
1 0 0

C r itic a l D e fe c ts

C r itic a l D e fe c ts P e rc e n ta g e

T o ta l D e fe c ts r e p o r te d





   



 
 
 

7
N u m b e r o f te s ts ru n

T o ta l t im e

N u m b e r o f te s ts r u n p e r tim e p e r io d
 

  
 

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 33

8
N u m b e r o f te s ts d e s ig n e d

T o ta l t im e

T e s t d e s ig n e ff ic ie n c y
 

  
 

9
N u m b e r o f te s ts re v ie w e d

T o ta l t im e

T e s t r e v ie w e ff ic ie n c y
 

  
 

10
T o ta l n u m b e r o f d e fe c ts

T o ta l n u m b e r o f te s t h o u rs

N u m b e r o f d e fe c ts p e r te s t h o u r
 

  
 

11
T o ta l n u m b e r o f d e fe c ts

T o ta l n u m b e r o f te s ts

N u m b e r o f b u g s p e r te s t
 

  
 

12
T o ta l n u m b e r o f d e fe c ts

T o ta l n u m b e r o f te s ts

N u m b e r o f b u g s p e r te s t
 

  
 

13
1 0 0

N u u m b e r o f te s ts ru n

T e s t E x e c u tio n C o v e ra g e P e r c e n ta g e

T o ta l n u m b e r o f te s ts to b e ru n



  

    

     

 
 
 

14
1 0 0

N u u m b e r o f r e q u ir e m e n ts C o v e re d

R e q u ir e m e n ts C o v e ra g e P e rc e n ta g e

T o ta l n u m b e r o f r e q u ir e m e n ts



  

   

  

 
 
 

VI. IMPACT OF PROPOSED STUDY ON ACADEMICS/INDUSTRY

The impact of presented study in this paper on academics & industry may be described as follows:

a. Reduction in cost and time in automated software testing will lead to the timely delivery of the product that

will boost customer satisfaction up to the larger possible extent

b. Through automation of test cases, it will help the industry professionals in improving the quality aspect of

the software product quantitatively as per local needs and global standards.

c. With the help of proposed study on Automated Software Testing using Soft Computing Techniques, the

results and performance of automated testing can be improved significantly meeting customer‟s

requirement and quality parameters within time and budget constraints leading to the higher confidence

among researchers/practitioners and customer satisfaction

VII. SUMMARY
Software testing is resource consuming and costly too. Automation is a good way to cut down time and cost. In

order to automate the process, we need to have some ways to generate oracles from the specification, and

generate test cases to test the target software against the oracles to decide their correctness. In general,

significant amount of human intervention is also needed in testing because the degree of automation remains at

the automated test script level written by testing team. Testing is potentially endless so we cannot test till all the

defects are unearthed and removed. It is not economically viable solution. Therefore at some point, we have to

stop testing and release the software. Testing is a trade-off between budget, time and quality. The optimistic

stopping rule is to stop testing when either reliability meets the requirement, or the benefit from continuing

testing cannot justify the testing cost. This will usually require the use of software reliability growth models to

evaluate and predict reliability of the software under test.

Using testing to locate and correct software defects can be an endless process. Bugs cannot be completely ruled

out. Sometimes testing and fixing problems may not necessarily lead to improve the quality and reliability of the

software. Because fixing a problem may introduce other severe problems into the system. Although it can

reduce costs by using software testing tools however it may not always be the case. Another problem with the

tools is that with using the testing tools there has to be enough knowledge and resources in able to use them.

In order to analyse the performance of various software metrics discussed in this paper, we require basically

three types of data sets such as: training dataset, validation dataset and testing dataset. Training data set is

Soft Computing Approaches for Automated Software Testing

www.ijceronline.com Open Access Journal Page 34

required for parameter optimization. Validation data set is used in order to control the bias-variance trade-off,

and validation data is used to select the best parameter setting. The testing dataset required for the performance

evaluation of reliability prediction method is carried out on unknown (previously unseen) data that has not been

used previously to determine the parameters of the prediction method.

REFERENCES

[1]. Aggarwal K.K. and Singh Y. (2012). Software Engineering: New Age International Publishers, India: third edition, pp: 308-346.

[2]. Software Quality Assurance: from theory to implementation, Daniel Galin, Pearson Education, 2004.
[3]. John H. (1999), International trends in software engineering and quality system standards: Ontario Hydro's Perspective, Part 1.

Software Quality Professional, 1(2), pp: 51-58.

[4]. Jung-Hua L. (2009), The Implementation of artificial neural networks applying to software reliability modeling. In Proceedings of
the Conference on Chinese Control and Decision Conference (CCDC 2009), 17-19 June, Taiwan, pp: 4349-4354.

[5]. G. Bernet, L. Bouaziz, and P. LeGall, “A Theory of Probabilistic Functional Testing,” Proceedings of the 1997 International

Conference on Software Engineering, 1997, pp. 216 –226
[6]. B. Beizer, “Software Testing Techniques,” Second Edition, Van Nostrand Reinhold Company Limited,1990, ISBN 0-442-20672-0

[7]. Software Testing Techniques, Technology Maturation and Research Strategies, Paul Li and Lu Luo School of Computer Science,

Carnegie Mellon University

[8]. Automated Software Testing, Elfriede Dustin, et all, Addison Wesley Longman, Inc. July 1999 and Linz, T., Daigl, M. GUI Testing

Made Painless.

[9]. Haykin S. (2010). Neural Networks and Learning Machines, third edition PHI, 2010.
[10]. Stephen H.K. (2003). Metrics and models in software quality engineering. Pearson education, India.

[11]. Aggarwal KK, Singh Y, Kaur A, Malhotra R (2006) Investigating the effect of coupling metrics on fault proneness in object-

oriented systems. Software Quality Professional 8(4): 4-16
[12]. Aggarwal KK, Singh Y, Kaur A, Malhotra R (2009) Empirical analysis for investigating the effect of object-oriented metrics on

fault proneness: a replicated case study. Software Process Improvement Practice 14(1): 39–62

[13]. Malhotra R, Kaur A, Singh Y (2011) Empirical validation of object-oriented metrics for predicting fault proneness at different
severity levels using support vector machines. Int J Syst Assur Eng Manag (July-Sept 2010) 1(3): 269–281. DOI 10.1007/s13198-

011-0048-7

[14]. Malhotra R, Singh Y, Kaur A (2009) Comparative analysis of regression and machine learning methods for predicting fault
proneness models. International Journal of Computer Applications in Technology 35(2): 183-193

[15]. Pradeep Kumar and Yogesh Singh (2010) “Prediction of Software Reliability Using Feed Forward Neural Network”, published in

the proceedings of International Conference on Computational Intelligence and Software Engineering (CiSE2010), Wuhan, China,
ISBN: 978-1-4244-5391-7, DOI 10.1109/CISE.2010.5677251.

[16]. Pradeep Kumar and Yogesh Singh (2012) “An empirical study of software reliability prediction using machine learning techniques”

published online in International Journal of System Assurance Engineering and Management (IJSAEM), Vol. 3, No.3, pp: 194-208,
Springer Publications. DOI: 10.1007/s13198-012-0123-8.

[17]. Pradeep Kumar and Yogesh Singh (2012) “Assessment of software testing time using soft computing techniques” published in

ACM SIGSOFT Software Engineering Notes, January Issue 2012. DOI: 10.1145/2088883.2088895.
[18]. Pradeep Kumar and Yogesh Singh (2013) “Comparative Analysis of Software Reliability Prediction Using Statistical and Machine

Learning Techniques” published in Int. J. Intelligent Systems Technologies and Applications (IJSTA), Inder-Science Publications,

Vol. 12, Nos. 3/4, pp: 230-253.
[19]. Singh Y, Kumar P (2010) Prediction of software reliability using feed forward neural networks. In: Proceedings of Computational

Intelligence and Software Engineering (CiSE „10), Wuhan, China: 1-5. DOI: 10.1109/CISE.2010.5677251.

[20]. Kirmani, M., Wahid, A., & Saif, S. (2015). Web Engineering: An Engineering Approach for Developing Web Applications.
International Journal of Software and Web Sciences, 1(12), 83-91.

[21]. Singh Y., Kaur A. and Malhotra R. (2008). Empirical validation of object-oriented metrics using discriminant analysis for object-

oriented systems. Software Quality Professional, 11(1), pp: 13-24.
[22]. Singh Y., Bhatia P.K. and Sangwan O.P. (2009). ANN model for predicting software function point metric. SIGSOFT Software

Engineering Notes, 34(1), pp: 1-4. DOI: 10.1145/1457516.1460352.
[23]. Singh Y., Bhatia P.K. and Sangwan O.P. (2009). Application of neural networks in software engineering: A Review. Information

Systems, Technology and Management Communications in Computer and Information Science, 31, Part 6, pp: 128-137. DOI:

10.1007/978-3-642-00405-6_17.
[24]. Singh Y. (2012). Software Testing, Cambridge University Press, 2012, India.

[25]. Rauf A., Anwar S., Jaffer M.A.and Shahid A.A.(2010), Automated GUI Test Coverage Analysis Using GA, 7th International

Conference on Information Technology New Generations

[26]. Rajappa V. , Biradar A.and Panda S.(2008), Effective Software Test Case Generation Using Genetic Algorithm Based Graph

Theory, First International Conference on Emerging Trends in Engineering & Technology.

[27]. Ruilian zhao,shanshan lv, “Neural network based test cases generation using genetic algorithm” 13th IEEE international symposium
on Pacific Rim dependable computing. IEEE, 2007.

International Journal of Computational Engineering Research (IJCER) is UGC

approved Journal with Sl. No. 4627, Journal no. 47631.

Pradeep Kumar. “Soft Computing Approaches for Automated Software Testing.” International

Journal of Computational Engineering Research (IJCER), vol. 7, no. 10, 2017, pp. 22–34.

http://dx.doi.org/10.1145/2088883.2088895
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5676124
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5676124
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5676124
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5676124
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5676124
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5676124
http://dx.doi.org/10.1109/CISE.2010.5677251
http://www.springerlink.com/content/978-3-642-00404-9/
http://www.springerlink.com/content/978-3-642-00404-9/
http://www.springerlink.com/content/978-3-642-00404-9/
http://www.springerlink.com/content/1865-0929/

