On intuitionistic fuzzy β generalized closed sets

Saranya M1, Jayanthi D2

1 MSc Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India
2 Assistant Professor of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India

ABSTRACT

In this paper, we have introduced the notion of intuitionistic fuzzy β generalized closed sets, and investigated some of their properties and characterizations.

KEYWORDS: Intuitionistic fuzzy topology, intuitionistic fuzzy β closed sets, intuitionistic fuzzy β generalized closed sets.

I. Introduction

The concept of fuzzy sets was introduced by Zadeh [12] and later Atanasov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper, we have introduced the notion of intuitionistic fuzzy β generalized closed sets, and investigated some of their properties and characterizations.

II. Preliminaries

Definition 2.1: [1] An intuitionistic fuzzy set (IFS for short) A is an object having the form

$A = \{ (x, \mu_A(x), \nu_A(x)) : x \in X \}$

where the functions $\mu_A : X \rightarrow [0,1]$ and $\nu_A : X \rightarrow [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \leq \mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$. Denote by IFS (X), the set of all intuitionistic fuzzy sets in X. An intuitionistic fuzzy set A in X is simply denoted by $A=(x, \mu_A, \nu_A)$ instead of denoting $A = \{ (x, \mu_A(x), \nu_A(x)) : x \in X \}$.

Definition 2.2: [1] Let A and B be two IFSs of the form $A = \{ (x, \mu_A(x), \nu_A(x)) : x \in X \}$ and $B = \{ (x, \mu_B(x), \nu_B(x)) : x \in X \}$. Then,

(a) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,
(b) $A = B$ if and only if $A \subseteq B$ and $A \supseteq B$,
(c) $A^c = \{ (x, \mu_A(x), \nu_A(x)) : x \in X \}$,
(d) $A \cup B = \{ (x, \mu_A(x) \vee \mu_B(x), \nu_A(x) \wedge \nu_B(x)) : x \in X \}$,
(e) $A \cap B = \{ (x, \mu_A(x) \wedge \mu_B(x), \nu_A(x) \vee \nu_B(x)) : x \in X \}$.

The intuitionistic fuzzy sets $0^\sim = (x, 0, 1)$ and $1^\sim = (x, 1, 0)$ are respectively the empty set and the whole set of X.

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

(i) $0^\sim, 1^\sim \in \tau$
(ii) $G_i \cap G_j \in \tau$ for any $G_i, G_j \in \tau$
(iii) $\cup G_i \in \tau$ for any family $\{ G_i : i \in J \} \subseteq \tau$.

In this case the pair (X, τ) is called intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

www.ijceronline.com Open Access Journal Page 37
\textbf{Definition 2.4:} [5] An IFS \(A = (x, \mu, \upsilon) \) in an IFTS \((X, \tau)\) is said to be an
\begin{enumerate}[\item]
 \item intuitionistic fuzzy \(\beta \) closed set (IF\(\beta \)CS for short) if \(\text{int}(\text{cl}(\text{int}(A))) \subseteq A \),
 \item intuitionistic fuzzy \(\beta \) open set (IF\(\beta \)OS for short) if \(A \subseteq \text{cl}(\text{int}(A)) \).
\end{enumerate}

\textbf{Definition 2.5:} [6] Let \(A \) be an IFS in an IFTS \((X, \tau)\). Then the \(\beta \)-interior and \(\beta \)-closure of \(A \) are defined as
\[\text{\(\beta \)}\text{int}(A) = \bigcup \{ G / G \text{ is an IF} \beta \text{OS in } X \text{ and } G \subseteq A \}, \]
\[\text{\(\beta \)}\text{cl}(A) = \bigcap \{ K / K \text{ is an IF} \beta \text{CS in } X \text{ and } A \subseteq K \}. \]

Note that for any IFS \(A \) in \((X, \tau)\), we have \(\text{\(\beta \)}\text{cl}(A^c) = (\text{\(\beta \)}\text{int}(A))^c \) and \(\text{\(\beta \)}\text{int}(A^c) = (\text{\(\beta \)}\text{cl}(A))^c \).

\textbf{Result 2.6:} Let \(A \) be an IFS in \((X, \tau)\), then
\begin{enumerate}[\item]
 \item \(\beta \text{cl}(A) \supseteq A \cup \text{int}(\text{cl}(\text{int}(A))) \)
 \item \(\beta \text{int}(A) \subseteq A \cap \text{cl}(\text{int}(\text{cl}(A))) \)
\end{enumerate}

\textbf{Proof:} (i) Now \(\text{int}(\text{cl}(\text{int}(A))) \subseteq \text{int}(\text{\(\beta \)}\text{int}(\text{\(\beta \)}\text{cl}(A))) \subseteq \beta \text{cl}(A) \), since \(A \subseteq \beta \text{cl}(A) \) and \(\beta \text{cl}(A) \) is an IF\(\beta \)CS. Therefore \(A \cup \text{int}(\text{cl}(\text{int}(A))) \subseteq \beta \text{cl}(A) \).

(ii) can be proved easily by taking complement in (i).

\section{III. Intuitionistic fuzzy \(\beta \)-generalized closed sets}

In this section we have introduced intuitionistic fuzzy \(\beta \) generalized closed sets and studied some of their properties.

\textbf{Definition 3.1:} An IFS \(A \) in an IFTS \((X, \tau)\) is said to be an \textit{intuitionistic fuzzy \(\beta \) generalized closed set} (IF\(\beta \)GCS for short) if \(\beta \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is an IF\(\beta \)OS in \((X, \tau)\).

The complement \(A^c \) of an IF\(\beta \)GCS \(A \) in an IFTS \((X, \tau)\) is called an intuitionistic fuzzy \(\beta \) generalized open set (IF\(\beta \)GOS in short) in \(X \).

The family of all IF\(\beta \)GCSs of an IFTS \((X, \tau)\) is denoted by \(\text{IF} \beta \text{GCS}(X) \).

\textbf{Example 3.2:} Let \(X = \{a, b\} \) and \(G = (x, (0.5, 0.4, 0.6)) \). Then \(\tau = \{0, 1\} \) is an IFT on \(X \). Let \(A = (x, (0.4, 0.3, 0.6)) \) be an IFS in \(X \).

Then, \(\beta \text{\(\beta \)}\text{GCS}(X) = \{0, 1\} \), \(\mu_\varepsilon \in [0, 1] \), \(\upsilon_\varepsilon \in [0, 1] \), \(\mu_\upsilon \in [0, 1] \), \(\upsilon_\mu \in [0, 1] \), \(0 \leq \mu_\mu + \upsilon_\upsilon \leq 1 \) and \(0 \leq \mu_\upsilon + \upsilon_\mu \leq 1 \).

We have \(\beta \text{cl}(A) \subseteq G \). As \(\beta \text{cl}(A) = A \), \(\beta \text{cl}(A) \subseteq G \), where \(G \) is an IF\(\beta \)OS in \(X \). This implies that \(A \) is an IF\(\beta \)GCS in \(X \).

\textbf{Theorem 3.3:} Every IF\(\beta \)RCS \((X, \tau)\) is an IF\(\beta \)GCS in \((X, \tau)\) but not conversely.

\textbf{Proof:} Let \(A \) be an IFCS. Therefore \(\text{cl}(A) = A \). Let \(A \subseteq U \) and \(U \) be an IF\(\beta \)OS. Since \(\beta \text{cl}(A) \subseteq \text{cl}(A) = A \subseteq U \), we have \(\beta \text{cl}(A) \subseteq U \). Hence \(A \) is an IF\(\beta \)GCS in \((X, \tau)\).

\textbf{Example 3.4:} Let \(X = \{a, b\} \) and \(G = (x, (0.5, 0.4, 0.6)) \). Then \(\tau = \{0, 1\} \) is an IFT on \(X \). Let \(A = (x, (0.4, 0.3, 0.6)) \) be an IFS in \(X \).

Then, \(\beta \text{\(\beta \)}\text{GCS}(X) = \{0, 1\} \), \(\mu_\varepsilon \in [0, 1] \), \(\upsilon_\varepsilon \in [0, 1] \), \(\mu_\upsilon \in [0, 1] \), \(\upsilon_\mu \in [0, 1] \), \(0 \leq \mu_\mu + \upsilon_\upsilon \leq 1 \) and \(0 \leq \mu_\upsilon + \upsilon_\mu \leq 1 \).

We have \(A \subseteq G \). As \(\beta \text{cl}(A) = A \), \(\beta \text{cl}(A) \subseteq G \), where \(G \) is an IF\(\beta \)OS in \(X \). This implies that \(A \) is an IF\(\beta \)GCS in \(X \), but not an IFCS, since \(\text{cl}(A) = G \).

\textbf{Theorem 3.5:} Every IF\(\beta \)RCS \((X, \tau)\) is an IF\(\beta \)GCS in \((X, \tau)\) but not conversely.

\textbf{Proof:} Let \(A \) be an IF\(\beta \)RCS. Since every IF\(\beta \)RCS is an IFCS, by theorem 3.3, \(A \) is an IF\(\beta \)GCS.
Example 3.8: Let $X = \{a, b\}$ and $G = (x, (0.5_a, 0.4_b), (0.5_a, 0.6_b))$. Then $\tau = \{\{0\sim, G, 1\sim\}$ is an IFT on X. Let $A = (x, (0.4_a, 0.3_b), (0.6_a, 0.7_b))$ be an IFS in X.

Then, $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]/ 0 \leq \mu_a + \nu_a \leq 1$ and $0 \leq \mu_b + \nu_b \leq 1\}$. We have $A \subseteq G$. As $\beta cl(A) = A,:\beta cl(A) \subseteq G$, where G is an IF β OS in X. This implies that A is an IF β GCS in X, but not an IFCS, since $cl(cl(A)) = G \not\subseteq A$.

Theorem 3.9: Every IF β CS in (X, τ) is an IF β GCS in (X, τ) but not conversely.

Proof: Assume A is an IF β CS. Since $\beta cl(A) \subseteq \alpha cl(A) = A$ and $A \subseteq U$, by hypothesis, we have $hcl(c) \not\subseteq U$. Hence A is an IF β GCS.

Example 3.10: Let $X = \{a, b\}$ and $G = (x, (0.5_a, 0.4_b), (0.5_a, 0.6_b))$. Then $\tau = \{\{0\sim, G, 1\sim\}$ is an IFT on X. Let $A = (x, (0.4_a, 0.3_b), (0.6_a, 0.7_b))$ be an IFS in X.

Then, $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]/ 0 \leq \mu_a + \nu_a \leq 1$ and $0 \leq \mu_b + \nu_b \leq 1\}$. We have $A \subseteq G$. As $\beta cl(A) = A, \beta cl(A) \subseteq G$, where G is an IF β OS in X. This implies that A is an IF β GCS in X, but not an IFCS, since $cl(cl(A)) = cl(G) = G \not\subseteq A$.

Theorem 3.11: Every IF β FCS in (X, τ) is an IF β GCS in (X, τ) but not conversely.

Proof: Assume A is an IF β FCS. Since $\beta cl(A) \subseteq \alpha cl(A) = A$ and $A \subseteq U$, by hypothesis, we have $\beta cl(A) \not\subseteq U$. Hence A is an IF β GCS.

Example 3.12: Let $X = \{a, b\}$ and $G = (x, (0.5_a, 0.6_b), (0.5_a, 0.4_b))$. Then $\tau = \{\{0\sim, G, 1\sim\}$ is an IFT on X. Let $A = (x, (0.5_a, 0.7_b), (0.5_a, 0.3_b))$ be an IFS in X.

Then, $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]/ 0 \leq \mu_a + \nu_a \leq 1$ and $0 \leq \mu_b + \nu_b \leq 1\}$. Now $A \subseteq U$. As $\beta cl(A) = 1\sim \subseteq 1\sim$, we have A is an IF β GCS in X, but not an IFCS since $cl(cl(A)) = cl(G) = 1\sim \not\subseteq A$.

Remark 3.13: Every IF β CS and every IF β GCS are independent to each other.

Example 3.14: Let $X = \{a, b\}$ and $G_1 = (x, (0.5_a, 0.5_b), (0.5_a, 0.5_b))$ and $G_2 = (x, (0.3_a, 0.1_b), (0.7_a, 0.8_b))$. Then $\tau = \{\{0\sim, G_1, G_2, 1\sim\}$ is an IFT on X. Let $A = (x, (0.4_a, 0.3_b), (0.6_a, 0.7_b))$ be an IFS in X. Then $A \subseteq G_1$ and $cl(A) = G_1 \subseteq G_1$, Therefore A is an IF β FCS.

Now $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]/ \mu_a \geq 0.5 \text{ and } \mu_b \geq 0.5 \text{ or } \mu_a < 0.3 \text{ and } \mu_b < 0.1, \nu_a + \nu_b \leq 1$ and $0 \leq \mu_a + \nu_a \leq 1\}$. Since $A \subseteq G_1$ where G_1 is an IF β GCS in X but $\beta cl(A) = (x, (0.5_a, 0.5_b), (0.5_a, 0.5_b)) \not\subseteq A$, A is not an IF β GCS.

Example 3.15: Let $X = \{a, b\}$ and $G = (x, (0.5_a, 0.4_b), (0.5_a, 0.6_b))$. Then $\tau = \{\{0\sim, G, 1\sim\}$ is an IFT on X. Let $A = (x, (0.4_a, 0.3_b), (0.6_a, 0.7_b))$ be an IFS in X.

Then, $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]/ 0 \leq \mu_a + \nu_a \leq 1$ and $0 \leq \mu_b + \nu_b \leq 1\}$. We have $A \subseteq G$. As $\beta cl(A) = A, \beta cl(A) \subseteq G$, where G is an IF β OS in X. This implies that A is an IF β GCS in X, but not an IF β CS, since $cl(cl(A)) = cl(G) = G \not\subseteq A$.

Theorem 3.16: Every IF β CS in (X, τ) is an IF β GCS in (X, τ) but not conversely.

Proof: Assume A is an IF β CS then $\beta cl(A) = A$. Let $A \subseteq U$ and U be an IF β OS. Then $\beta cl(A) \subseteq U$, by hypothesis. Therefore A is an IF β GCS.

Example 3.17: Let $X = \{a, b\}$ and $G = (x, (0.5_a, 0.7_b), (0.5_a, 0.3_b))$, then $\tau = \{\{0\sim, G, 1\sim\}$ is an IFT on X. Let $A = (x, (0.5_a, 0.8_b), (0.5_a, 0.2_b), (0.5_a, 0.7_b))$ be an IFS in X.

Then, $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]/ \mu_a < 0.5 \text{ whenever } \mu_a \geq 0.5, \mu_b \geq 0.5 \text{ whenever } \mu_a < 0.5 \text{ whenever } \mu_b \geq 0.5 \text{ and } \mu_b \geq 0.5 \text{ or } \mu_a < 0.3 \text{ and } \mu_b < 0.1, \nu_a + \nu_b \leq 1$ and $0 \leq \mu_a + \nu_a \leq 1\}$. Now $A \subseteq U$ and $\beta cl(A) = 1\sim \subseteq 1\sim$. This implies that A is an IF β GCS in X, but not an IF β CS since $cl(cl(A)) = cl(cl(G)) = int(1\sim) = 1\sim \not\subseteq A$.

Theorem 3.18: Every IF β PCS in (X, τ) is an IF β GCS in (X, τ) but not conversely.

Proof: Assume A is an IF β PCS[11]. Since every IF β PCS is an IF β CS[7], by theorem 3.16, A is an IF β GCS.
On intuitionistic fuzzy β generalized closed...

Example 3.19: Let $X = \{a, b\}$ and $G = (x, (0.5_\alpha, 0.4_\beta), (0.5_\alpha, 0.6_\beta))$. Then $\tau = \{0\sim, G, 1\sim\}$ is an IFT on X. Let $A = (x, (0.4_\alpha, 0.5_\beta) (0.6_\alpha, 0.7_\beta))$ be an IFS in X.

Then, $\beta \mathcal{C}(X) = \{0\sim, 1\sim, \mu_\alpha \varepsilon [0,1], \mu_\beta \varepsilon [0,1], \nu_\alpha \varepsilon [0,1], \nu_\beta \varepsilon [0,1] / 0 \leq \mu_\alpha + \nu_\alpha \leq 1 \text{ and } 0 \leq \mu_\beta + \nu_\beta \leq 1\}$. Here A is an IFS in X. As $\text{int}(\text{cl}(A)) = 0\sim \subseteq A$. Therefore A is an IFS in X.

Since $\beta \mathcal{C}(X) = \{0\sim, 1\sim, \mu_\alpha \varepsilon [0,1], \mu_\beta \varepsilon [0,1], \nu_\alpha \varepsilon [0,1], \nu_\beta \varepsilon [0,1] / \text{either } \mu_\alpha \geq 0.6 \text{ or } \mu_\beta < 0.4$ whenever $\mu_\alpha, \mu_\beta \varepsilon [0.5, 0.6] \leq \mu_\alpha + \nu_\alpha \leq 1$ and $0 \leq \mu_\beta + \nu_\beta \leq 1\}$.

But A is not an IFPCS in X, as we cannot find any IFPCS B such that $\text{int}(B) \subseteq A \subseteq B$ in X.

In the following diagram, we have provided relations between various types of intuitionistic fuzzy closedness.

The reverse implications are not true in general in the above diagram.

Remark 3.20: The union of any two IFS in GCS is not an IFS in GCS in general as seen from the following example.

Example 3.21: Let $X = \{a, b\}$ and $\tau = \{0\sim, G_1, G_2, 1\sim\}$ where $G_1 = (x, (0.7_\alpha, 0.8_\beta), (0.3_\alpha, 0.2_\beta))$ and $G_2 = (x, (0.6_\alpha, 0.7_\beta), (0.4_\alpha, 0.3_\beta))$. Then the IFSS $A = (x, (0.6_\alpha, 0.5_\beta), (0.4_\alpha, 0.3_\beta))$ and $B = (x, (0.4_\alpha, 0.8_\beta), (0.4_\alpha, 0.2_\beta))$ are IFS in $GCS(X)$ but $A \cup B$ is not an IFS in $GCS(X)$.

Then $\beta \mathcal{C}(X) = \{0\sim, 1\sim, \mu_\alpha \varepsilon [0,1], \mu_\beta \varepsilon [0,1], \nu_\alpha \varepsilon [0,1], \nu_\beta \varepsilon [0,1] / \text{provided } \mu_\beta < 0.7 \text{ whenever } \mu_\alpha \geq 0.6$, $\mu_\alpha < 0.6 \text{ whenever } \mu_\alpha \geq 0.7$, $0 \leq \mu_\alpha + \nu_\alpha \leq 1$ and $0 \leq \mu_\beta + \nu_\beta \leq 1\}$.

As $\beta \mathcal{C}(A) = A$, we have A is an IFPCS in X and $\beta \mathcal{C}(B) = B$, we have B is an IFS in X. Now $A \cup B = (x, (0.6_\alpha, 0.8_\beta), (0.4_\alpha, 0.2_\beta)) \subseteq G_1$ where G_1 is an IFS in $GCS(X)$, but $\beta \mathcal{C}(A \cup B) = 1\sim \not\subseteq G_1$.

Theorem 3.22: Let (X, τ) be an IFTS. Then for every $A \in \beta \mathcal{C}(X)$ and for every $B \in \beta \mathcal{C}(X)$, $A \subseteq \beta \mathcal{C}(A) \Rightarrow B \in \beta \mathcal{C}(X)$.

Proof: Let $B \subseteq U$ and U be an IFS. Then, $A \subseteq B$, $A \subseteq U$. By hypothesis, $B \subseteq \beta \mathcal{C}(A)$. Therefore $\beta \mathcal{C}(B) \subseteq \beta \mathcal{C}(\beta \mathcal{C}(A)) = \beta \mathcal{C}(A) \subseteq U$, since A is an IFS in X. Hence $B \in \beta \mathcal{C}(X)$.

Theorem 3.23: An IFS A of an IFTS (X, τ) is an IFS if and only if $A \subseteq F$ if for every $\beta \mathcal{C}(X) F$ for every $\beta \mathcal{C}(X) F$. X.

Proof: (Necessity): Let F be an IFS and $A \subseteq F$ [9], then F is an IFS. Therefore $\beta \mathcal{C}(A) \subseteq F$, by hypothesis. Hence again [9], $\beta \mathcal{C}(A) \subseteq F$.

Sufficiency: Let U be an IFS such that $A \subseteq U$. Then U is an IFS and $A \subseteq (U F)$. By hypothesis, $A \subseteq U \Rightarrow \beta \mathcal{C}(A) \subseteq (U F)$. Hence by [9], $\beta \mathcal{C}(A) \subseteq (U F)$. Hence A is an IFS.

Theorem 3.24: Let (X, τ) be an IFTS. Then every IFS in (X, τ) is an IFS if and only if $\beta \mathcal{C}(X) = \beta \mathcal{C}(X)$. X. X.

Proof: (Necessity): Suppose that every IFS in (X, τ) is an IFS. Let $U \in \beta \mathcal{C}(X)$, and by hypothesis, $\beta \mathcal{C}(U) \subseteq U \subseteq \beta \mathcal{C}(U)$. This implies $\beta \mathcal{C}(U) = U$. Therefore $U \in \beta \mathcal{C}(X)$. Hence $\beta \mathcal{C}(X) \subseteq \beta \mathcal{C}(X)$. Let $A \subseteq \beta \mathcal{C}(X)$, then $A \subseteq \beta \mathcal{C}(X) \subseteq \beta \mathcal{C}(X)$. That is, $A \subseteq \beta \mathcal{C}(X)$. Therefore $\beta \mathcal{C}(X) \subseteq \beta \mathcal{C}(X)$. Thus $\beta \mathcal{C}(X) = \beta \mathcal{C}(X)$.

Sufficiency: Suppose that $\beta \mathcal{C}(X) = \beta \mathcal{C}(X)$. Let $A \subseteq U$ and U be an IFS. By hypothesis $\beta \mathcal{C}(A) \subseteq \beta \mathcal{C}(U) = U$, since $U \in \beta \mathcal{C}(X)$. Therefore A is an IFS in X. X.
Theorem 3.25: If A is an IFβOS and an IFβGCS in (X, τ) then A is an IFβCS in (X, τ).

Proof: Since $A \subseteq A$ and A is an IFβOS, by hypothesis, $\beta \text{cl}(A) \subseteq A$. But $A \subseteq \text{cl}(A)$. Therefore $\beta \text{cl}(A) = A$. Hence A is an IFβCS.

Theorem 3.26: Let A be an IFβGCS in (X, τ) and $p_{\alpha, \beta}$ be an IFP in X such that $\text{int}(p_{\alpha, \beta}) \beta \text{cl}(A)$, then $\text{int}(\text{cl}(p_{\alpha, \beta}))$ $\subseteq A$.

Proof: Let A be an IFβGCS and let $\text{int}(p_{\alpha, \beta}) \beta \text{cl}(A)$. Suppose $\text{int}(\text{cl}(p_{\alpha, \beta}))$ $\subseteq A$. Since by [9] $A \subseteq [\text{int}(\text{cl}(p_{\alpha, \beta}))]$. This implies $[\text{int}(\text{cl}(p_{\alpha, \beta}))]$ is an IFβOS. Then by hypothesis, $\beta \text{cl}(A) \subseteq [\text{int}(\text{cl}(p_{\alpha, \beta}))]$. This implies $\text{cl}(\text{int}(\text{cl}(p_{\alpha, \beta})))$ $\subseteq A$. Hence $\text{cl}(\text{int}(\text{cl}(p_{\alpha, \beta})))$ $\subseteq A$. Therefore A is an IFROS.

Theorem 3.27: Let $F \subseteq A \subseteq X$ where A is an IFβOS and an IFβGCS in X. Then F is an IFβGCS in A if and only if F is an IFβGCS in X.

Proof: Necessity: Let U be an IFβOS in X and $F \subseteq U$. Also let F be an IFβGCS in A. Then clearly $F \subseteq A \cap U$ and $A \cap U$ is an IFβOS in A. Hence the β closure of F in A, $\beta \text{cl}(F) \subseteq A \cap U$. By theorem 3.25, A is an IFβCS. Therefore $\beta \text{cl}(A) = A$ and β closure of F in X, $\beta \text{cl}(F) \subseteq \beta \text{cl}(F) \cap \beta \text{cl}(A) = \beta \text{cl}(F) \cap A = \beta \text{cl}(F) \subseteq A \cap U \subseteq U$. That is, $\beta \text{cl}(F) \subseteq U$ whenever $F \subseteq U$. Hence F is an IFβGCS in X.

Sufficiency: Let V be an IFβOS in A such that $F \subseteq V$. Since A is an IFβOS in X, V is an IFβOS in X. Therefore $\beta \text{cl}(F) \subseteq V$, since F is an IFβGCS in X. Thus $\beta \text{cl}(F) = \beta \text{cl}(F) \cap A \subseteq V \cap A \subseteq V$. Hence F is an IFβGCS in A.

Theorem 3.28: For an IFS A, the following conditions are equivalent:

(i) A is an IFOS and an IFβGCS

(ii) A is an IFRO

Proof: (i) \Rightarrow (ii) Let A be an IFOS and an IFβGCS. Then $\beta \text{cl}(A) \subseteq A$ and $A \subseteq \beta \text{cl}(A)$ this implies that $\beta \text{cl}(A) = A$. Therefore A is an IFβCS, since $\text{int}(\text{cl}(A)) \subseteq A$. Since A is an IFOS, $\text{int}(A) = A$. Therefore $\text{int}(\text{cl}(A)) \subseteq A$. Since A is an IFOS, it is an IFPOS. Hence $A \subseteq \text{int}(\text{cl}(A))$. Therefore $A = \text{int}(\text{cl}(A))$. Hence A is an IFRO.

(ii) \Rightarrow (i) Let A be an IFRO. Therefore $A = \text{int}(\text{cl}(A))$. Since every IFRO in an IFOS and $A \subseteq A$. This implies $\text{int}(\text{cl}(A)) \subseteq A$. Therefore A is an IFβCS. Hence A is an IFβGCS.

Theorem 3.29: For an IFOS A in (X, τ), the following conditions are equivalent.

(i) A is an IFCS

(ii) A is an IFβGCS and an IFQ-set

Proof: (i) \Rightarrow (ii) Since A is an IFCS, it is an IFβGCS. Now $\text{int}(\text{cl}(A)) = \text{int}(A) = A = \text{cl}(A) = \text{cl}(\text{int}(A))$, by hypothesis. Hence A is an IFQ-set[8].

(ii) \Rightarrow (i) Since A is an IFOS and an IFβGCS, by theorem 3.28, A is an IFRO. Therefore $A = \text{int}(\text{cl}(A)) = \text{cl}(\text{int}(A)) = \text{cl}(A)$, by hypothesis. A is an IFCS.

Theorem 3.30: Let (X, τ) be an IFTS, then for every $A \in \text{IFSPC}(X)$ and/or every B in X, $\text{int}(A) \subseteq B \subseteq A \Rightarrow B \in \text{IFβGC}(X)$.

Proof: Let A be an IFSPCS in X. Then there exists an IFPSC, (say) C such that $\text{int}(C) \subseteq A \subseteq C$. By hypothesis, $B \subseteq A$. Therefore $B \subseteq C$. Since $\text{int}(C) \subseteq A$, $\text{int}(C) \subseteq \text{int}(A)$ and $\text{int}(C) \subseteq B$, by hypothesis. Thus $\text{int}(C) \subseteq B \subseteq C$. Thus $B \in \text{IFβGC}(X)$.
On intuitionistic fuzzy β-generalized closed... References