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I. INTRODUCTION: 
Let us consider graph G=(V,E) where V=(1,2,...n) is the set of nodes and E is the set of edges. The edge 

between two nodes and is defined by (i,j).Let (Wij)n×nis symmetric weight matrix such that  

Wij>0,∀𝜖𝐸(1.1)   

Given two nodes s and t, if s<t there exist a partition U and V-U to the node set V such that W(s)= 𝑤𝑖𝑗𝑖𝜖𝑈    

(1.2) 

Where j𝜖𝑉 − 𝑈 is maximized for s, t not belonging to the same set. This problem is called s-t max cut problem. 

Through the exact solution is difficult however the same can be obtained by considering a equivalent problem. 

𝑀𝑎𝑥:
1

4
  (1 − 𝑥𝑖𝑥𝑗 )𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1                                                                                        (1.3) 

Subject to 𝑥𝑠 + 𝑥𝑡 = 0  𝑎𝑛𝑑𝑥𝑖𝜖 −1,1 , ∀𝑖 = 1,2, … . . 𝑛 

 

Benson and Zhang[2]found an algorithm to get an approximate solution in this direction to solve 

combinatorial and quadratic optimization problem. Neural computation is combinatorial and 

quadraticoptimization problem due to Hopfield and Tank[10] put a foundation stone in solving such type 

ofproblems.Many computational model and combinatorial optimization algorithm have been 

developed.Aiyer,NiranjanandFallside[1]extended this idea for a theoretical study of such problem. Similar 

algorithm is used in solving travelling salesman problem by Durbin and Willshaw[6]and multiple 

traveling salesman problem by using Neural Network, due toWacholder,Han and 

Mann[15].Gee,AiyerandPrager [7]made a frame work for studying optimization problem by Neural Network, 

where in adifferent paper Gee and Prager[7]used polyhedral combinatorics in Neural 

Network.Urahama[13]usedgradient projection Network for solving linear and nonlinear programming problems. 

Some of therelated works can be found in Bout and Miller[3],Gold and Rangaranjan [9],Gold and 

Mjolsness[11],Simic[12],Waugh and Westervelt[16],Walfe,Parry and Macmillan[17],Xu[18],Yuille and 

Kosowsky[19] etc.A systematic study of neural computational model is given by Van Den Berg[14],Clchoki 

and Unbehaunen[4]helps to formulate an algorithm to solve such type of problem in an efficient manner. All 

these workbased on deterministic annealing type and to study the global minimum of the effective energy at 

hightemperature and track it as temperature decreases.In this paper we have generalized the work ofDang[5] by 

considering an equivalent linear constrained optimizing problem with general logarithmicbarrier function. 

𝑏 𝑥 = − [ln 𝑝𝑥𝑖 + 𝑞 + ln 𝑞 − 𝑝𝑥𝑖 ]
𝑛
𝑖=1                                                      (1.4) 

to find an approximate solution. Where the parameters p,q are positivereal. The barrier parametersbehave as 

temperature decreasing to zero from a sufficiently large positive number satisfying convexity of the barrier 

function. We have developed an algorithm for which the network converges toat least a local minimum point, if 

a local minimum point of the barrier problem isgenerated for adecreasing sequence of values with zero limit. 

Theorganization of the paper is as follows. Following the introduction in section 2, we haveconsideredlogarithm 

Abstract: The combinatorial optimization problem is one of the important applications in neural 

network computation.The solutions of linearly constrained continuous optimization problems are dif-

ficult with an exact algorithm, but the algorithm for the solution of such problems is derived by using 

logarithm barrier function. In this paper we have made an attempt to solve the linear constrained 

optimization problem by using general logarithm barrier function to get an approximate solution. In 

this case the barrier parameters behave as temperature decreasing to zero from sufficiently large 

positive number satisfying convexity of the barrier function. We have developed an algorithm to 

generate decreasing sequence of solution converging to zero limit.  

Keywords: Barrier function, weightmatrix, barrier parameter, Lagrange multiplier,s-t max cut 

problem, descent direction.  
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barrier function to minimize the problem with Lagrange multiplier. In section3,we have proved the theorem 

byconsidering general logarithmic function. Numerical example insection4, has been presented to show the 

efficiency of the algorithm. Finally the paper concludedwith a remark in the section 5. 

 

II. LINEAR LOGARITHMIC BARRIER FUNCTION: 
In order to find the solution of the problem first of all we will convert s-t max cut problem into alinearly 

constrained continuous optimization problem and then derive some theoretical results froman application of 

linear logarithmic barrier function.From s-t max-cut problem we have 

𝑚𝑖𝑛: 𝑓 𝑥 =
1

2
𝑥𝑇 𝑊 − 𝛼𝐼 𝑥                                                                      (2.1) 

Subject to𝑥𝑖 + 𝑥𝑡 = 0 

𝑥𝑖𝜖 −1,1 , 𝑖 = 1,2,3…… . 𝑛 

where∝ is any positive number and I an n×n identity matrixand 

𝑊 =  
0 𝑤12 ⋯ 𝑤1𝑛

⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 ⋯ 0

  

 

be a symmetric weight matrix. 

Let 𝑏 𝑥 = − [ln 𝑝𝑥𝑖 + 𝑞 + ln 𝑞 − 𝑝𝑥𝑖 ]
𝑛
𝑖=1                                                (2.2) 

which is used as barrier function –q/p<xi<q/p ,i=1,2,……n in the objective function. 

Let us define a function ℎ(𝑥, 𝛽) for a positive barrier parameter β such that 

min ℎ 𝑥, 𝛽 = 𝑓 𝑥 + 𝛽𝑏(𝑥)                                                                  (2.3) 

Subject to 𝑥𝑠 + 𝑥𝑡 = 0 

Let 𝐹 =  𝑥: 𝑥𝑠 + 𝑥𝑡 = 0  

and𝐵 =  𝑥:−
𝑞

𝑝
≤ 𝑥𝑖 ≤

𝑞

𝑝
  , 𝑖 = 1,2, … 𝑛 

𝜕𝑏(𝑥)

𝜕𝑥𝑖
= − 

𝑝

𝑝𝑥𝑖 + 𝑞
+

−𝑝

𝑞 − 𝑝𝑥𝑖
 = −𝑝  

1

𝑝𝑥𝑖 + 𝑞
−

1

𝑞 − 𝑝𝑥𝑖
  

Thus lim𝑥𝑖→(−
𝑞

𝑝
)+

𝜕𝑏 (𝑥)

𝜕𝑥𝑖
= −∞ , lim𝑥𝑖→(−

𝑞

𝑝
)+

𝜕𝑏(𝑥)

𝜕𝑥𝑖
= ∞                                        (2.4) 

From the definition of f(x) it is clear that ∇𝑓 𝑥 =  𝑊 + 𝛼𝐼 𝑥 is bounded on a set B and hence there exists an 

interior point 𝑥∗ of B such that it is a point of local or global minimum point of ℎ 𝑥, 𝛽  defined in (2.1). 

Now we will develop an algorithm for approximating a solution of  

Min: f(x) =
1

2
𝑥𝑇 𝑊 + 𝛼𝐼 𝑥 

Subject to xs+ xt=0  

𝑥𝑖𝜖 −1,1 , 𝑖 = 1,2, … . . 𝑛and to find minimum point where every component equal to -1 and 1 from the solution 

of (2.1) at the limiting value of β which converging to zero. 

Let 𝐿 𝑥, 𝜆 = ℎ 𝑥, 𝛽 − 𝜆𝑒𝑠𝑡
𝑇 𝑥 

𝑒𝑠𝑡 = (0,0, … .0,1,0,0… .0,1,0… .0)𝑇𝜖𝑅𝑛  

For any given barrier parameter β>0 ,the first order necessary optimality condition of (2.1) says that if 𝑥 is a 

minimum point of (2.1) then there exists a Lagrange multiplier λ satisfying ∇𝑥𝐿 𝑥, 𝜆 = ∇ℎ 𝑥, 𝛽 − 𝜆𝑒𝑠𝑡 = 0 

𝑒𝑠𝑡
𝑇 𝑥 = 0                                                                                             (2.5) 

For 𝑖 ≠ 𝑠 or t we have  
𝜕𝐿(𝑥, 𝜆)

𝜕𝑥𝑖
=
𝜕𝑓(𝑥)

𝜕𝑥𝑖
− 𝛽  

𝑝

𝑝𝑥𝑖 + 𝑞
−

𝑝

𝑞 − 𝑝𝑥𝑖
 = 0 

⇒ 𝛽𝑝  
1

𝑝𝑥𝑖 + 𝑞
−

1

𝑞 − 𝑝𝑥𝑖
 =

𝜕𝑓(𝑥)

𝜕𝑥𝑖
 

⇒ 𝛽𝑝  
−2𝑝𝑥𝑖

𝑞2 −  𝑝𝑥𝑖 
2
 =

𝜕𝑓(𝑥)

𝜕𝑥𝑖
 

⇒ (𝑞)2
𝜕𝑓(𝑥)

𝜕𝑥𝑖
−  𝑝𝑥𝑖 

2
𝜕𝑓(𝑥)

𝜕𝑥𝑖
= −2𝛽𝑝. 𝑝𝑥𝑖  

⇒ (𝑝𝑥𝑖)
2
𝜕𝑓(𝑥)

𝜕𝑥𝑖
− 2𝛽𝑝. 𝑝𝑥𝑖 −  𝑞 2

𝜕𝑓(𝑥)

𝜕𝑥𝑖
= 0 

⇒ 𝑝𝑥𝑖 =

2𝛽𝑝 ±  4𝛽2𝑝2 − 4
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
(−𝑞2 𝜕𝑓 𝑥 

𝜕𝑥 𝑖
)

2
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
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⇒ 𝑥𝑖 =
𝛽𝑝± 𝛽2𝑝2+𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
 

2

𝑝
𝜕𝑓  𝑥 

𝜕𝑥 𝑖

                                                                     (2.6) 

and for i=s or t 
𝜕𝐿(𝑥, 𝜆)

𝜕𝑥𝑖
= (

𝜕𝑓 𝑥 

𝜕𝑥𝑖
− 𝜆) − 𝛽  

𝑝

𝑝𝑥𝑖 + 𝑞
−

𝑝

𝑞 − 𝑝𝑥𝑖
 = 0 

We derive  𝑥𝑖 =
𝛽𝑝± 𝛽2𝑝2+𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝜆 

2

𝑝 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝜆 

 

Let 𝑑𝑖(𝑥, 𝜆) =

 
 
 
 

 
 
 𝛽𝑝± 𝛽2𝑝2+𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
 

2

𝑝 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
 

, 𝑖 ≠ 𝑠𝑜𝑟𝑡

𝛽𝑝± 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝜆 

2

𝑝 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝜆 

,   𝑖 = 𝑠𝑜𝑟𝑡

                                          (2.7) 

 

 

for i=1,2,…n and 𝑑 𝑥, 𝜆 = (𝑑1 𝑥, 𝜆 , 𝑑2 𝑥, 𝜆 , … 𝑑𝑛(𝑥, 𝜆))𝑇from the above discussion it shows that (𝑑1 𝑥, 𝜆 −

𝑥 is a descent direction of 𝐿 𝑥, 𝜆  if −
𝑞

𝑝
< 𝑥 <

𝑞

𝑝
 .Before proving our main theorem we will prove the following 

lemma. 

 

2.1. Lemma: Assume that –
q

p
< 𝑥 <

q

p
 

(i) If 𝑑𝑖 𝑥, 𝜆 − 𝑥𝑖 < 0   then 
𝜕

𝜕𝑥 𝑖
 𝐿 𝑥, 𝜆  > 0 

(ii)If 𝑑𝑖 𝑥, 𝜆 − 𝑥𝑖 > 0   then 
𝜕

𝜕𝑥 𝑖
 𝐿 𝑥, 𝜆  < 0 

(iii)If 𝑑𝑖 𝑥, 𝜆 − 𝑥𝑖 = 0   then 
𝜕

𝜕𝑥 𝑖
 𝐿 𝑥, 𝜆  = 0 

(iv)If 𝑑𝑖 𝑥, 𝜆 − 𝑥𝑖 ≠ 0   then ∇𝑥𝐿 𝑥, 𝜆 𝑇 𝑑 𝑥, 𝜆 − 𝑥 < 0 

(v)If 𝑒𝑠𝑡
𝑇  𝑑 𝑥, 𝜆 − 𝑥 = 0 and 𝑑 𝑥, 𝜆 − 𝑥 ≠ 0 then ∇ℎ(𝑥, 𝛽)𝑇 𝑑 𝑥, 𝜆 − 𝑥 < 0 

Proof:Beforeproving these lemma we need to prove that 

 
𝜕𝐿(𝑥,𝜆)

𝜕𝑥 𝑖
 > 0if𝑑𝑖 𝑥, 𝜆 − 𝑥𝑖 < 0 

Let 𝑣𝑖 =  
0 , 𝑖 ≠ 𝑠𝑜𝑟𝑡
𝜆 , 𝑖 = 𝑠𝑜𝑟𝑡

  

𝑖 = 1,2, … . . 𝑛 

When 
𝜕𝑓 𝑥 

𝜕𝑥𝑖
− 𝑣𝑖 ≠ 0 

𝛽𝑝 ±  𝛽2𝑝2+𝑞2  
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

𝑝(
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖)

=

 𝛽𝑝 +  𝛽2𝑝2+𝑞2  
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

  𝛽𝑝 −  𝛽2𝑝2+𝑞2  
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

 

𝑝(
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖)  𝛽𝑝 −  𝛽2𝑝2+𝑞2  

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

 

 

=
𝛽2𝑝2−𝛽2𝑝2−𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2

𝑝(
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖) 𝛽𝑝− 𝛽

2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
 

 

=
−𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2

𝑝(
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖) 𝛽𝑝− 𝛽

2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
 

 

=
−𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

𝑝 𝛽𝑝− 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
 

                                                                        (2.8) 
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Similarly 

𝛽𝑝− 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2

𝑝 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

=
𝛽2𝑝2−𝛽2𝑝2+𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2

𝑝(
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖) 𝛽𝑝+ 𝛽2𝑝2+𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
 

=
−𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

 𝛽𝑝+ 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
 

      (2.9) 

For 𝑜 < 𝑥𝑖 <
𝑞

𝑝
 it is clear that 

𝑝2𝑥𝑖
2 − 𝑞2 = − 𝑝𝑥𝑖 + 𝑞  𝑞 − 𝑝𝑥𝑖 < 0 

and that for any point 𝑥,  
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖   can only be zero ,negative or positive. 

Case 1: Considering  
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 = 0  then 𝑑𝑖 𝑥, 𝜆 = 0 

From  𝑑𝑖 𝑥, 𝜆 − 𝑝𝑥𝑖 < 0,we obtain 0 < 𝑥𝑖  
Thus  𝑞 − 𝑝𝑥𝑖 < (𝑝𝑥𝑖 + 𝑞) 

So,  − 
𝑝

𝑝𝑥𝑖+𝑞
−

𝑝

𝑞−𝑝𝑥𝑖
 > 0 

and
𝜕

𝜕𝑥𝑖
 𝐿 𝑥, 𝜆  =

𝜕𝑓 (𝑥)

𝜕𝑥𝑖
− 𝑣𝑖 − 𝛽  

𝑝

𝑝𝑥𝑖+𝑞
−

𝑝

𝑞−𝑝𝑥𝑖
 > 0 

Case II: Let  
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 < 0 

From 𝑑𝑖 𝑥, 𝜆 − 𝑥𝑖 < 0 

Using (2.8) and (2.9) we have  

0 <

 
 

 

𝑥𝑖 +
𝛽𝑝 +  𝛽2𝑝2+𝑞2  

𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

𝑝  
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

 
 

 

 
 

 

𝑥𝑖 +
𝛽𝑝 −  𝛽2𝑝2+𝑞2  

𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

𝑝  
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

 
 

 

 

=

 
 
 

 
 

𝑥𝑖 −
𝑞2  

𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

𝑝  𝛽𝑝 −  𝛽2𝑝2+𝑞2  
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

 
 
 
 

 
 

 
 
 

 
 

𝑥𝑖 −
𝑞2  

𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

𝑝  𝛽𝑝 +  𝛽2𝑝2+𝑞2  
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

 
 
 
 

 
 

 

=𝑥𝑖
2 −

𝑞2𝑥𝑖 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

𝑝 𝛽𝑝− 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
 

−
𝑞2𝑥𝑖 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

𝑝 𝛽𝑝+ 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
 

+
𝑞4 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2

𝑝2 𝛽2𝑝2−𝛽2𝑝2−𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
 

 

=𝑥𝑖
2 −

𝑞2𝑥𝑖 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

𝑝

 
 

 
1

𝛽𝑝− 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
+

1

𝛽𝑝+ 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2

 
 

 

−
𝑞2

𝑝2 

=𝑥𝑖
2 −

𝑞2𝑥𝑖 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

𝑝

 
 

 𝛽𝑝+ 𝛽2𝑝2+𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2
+𝛽𝑝− 𝛽2𝑝2+𝑞2 

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2

𝛽2𝑝2−𝛽2𝑝2−𝑞2 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
−𝑣𝑖 

2

 
 

 

−
𝑞2

𝑝2 

= 𝑥𝑖
2 −  

𝑞2𝑥𝑖  
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

𝑝
  

2𝛽𝑝

−𝑞2  
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2 −
𝑞2

𝑝2
= 𝑥𝑖

2 −
𝑞2

𝑝2
+

2βxi

 
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

=
𝑝2𝑥𝑖

2 − 𝑞2

𝑝2
+

2βxi

 
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

 

⇒  𝑝2𝑥𝑖
2 − 𝑞2  

𝜕𝑓 𝑥 

𝜕𝑥𝑖
− 𝑣𝑖 + 2βxip

2 < 0 

⇒
𝜕𝑓 𝑥 

𝜕𝑥𝑖
− 𝑣𝑖 +

2𝛽𝑝2𝑥𝑖

𝑝2𝑥𝑖
2 − 𝑞2

> 0 

𝑏𝑒𝑐𝑎𝑢𝑠𝑒
𝜕𝑓 𝑥 

𝜕𝑥𝑖
− 𝑣𝑖 < 0 

⇒
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 − 𝛽  

𝑝

𝑝𝑥𝑖+𝑞
−

𝑝

𝑞−𝑝𝑥𝑖
 >0  

⇒
𝜕𝐿(𝑥, 𝜆)

𝜕𝑥𝑖
> 0 

Case III:If we have  
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0 >

 
 

 

𝑥𝑖 +
𝛽𝑝 +  𝛽2𝑝2+𝑞2  

𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

𝑝  
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

 
 

 

 
 

 

𝑥𝑖 +
𝛽𝑝 −  𝛽2𝑝2+𝑞2  

𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

2

𝑝  
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

 
 

 

= 𝑥𝑖
2 −

𝑞2

𝑝2
+

2βxi

 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

=
𝑝2𝑥𝑖

2 − 𝑞2

𝑝2
+

2βxi

 
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 

 

Thus 0 >  𝑝2𝑥𝑖
2 − 𝑞2  

𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 + 2βxip

2 

 

Therefore  0 <
𝜕𝑓  𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖 +

2𝛽𝑝2𝑥𝑖

𝑝2𝑥𝑖
2−𝑞2 

=
𝜕𝑓 𝑥 

𝜕𝑥𝑖
− 𝑣𝑖 − 𝛽  

𝑝

𝑝𝑥𝑖 + 𝑞
−

𝑝

𝑞 − 𝑝𝑥𝑖
 =

𝜕𝐿(𝑥, 𝜆)

𝜕𝑥𝑖
 

Using this result the rest of this Lemma can be proved similarly. 

Now if we will consider all −
𝑞

𝑝
< 𝑥 <

𝑞

𝑝
  , 𝑑 𝑥, 𝜆 − 𝑥 = 0 𝑖𝑓𝑎𝑛𝑑𝑜𝑛𝑙𝑦𝑖𝑓∇𝑥𝐿 𝑥, 𝜆 = 0  

Since −
𝑞

𝑝
< 𝑑(𝑥, 𝜆) <

𝑞

𝑝
 then  𝑑 𝑥, 𝜆 − 𝑥  satisfies the desired property and when searching for a point in 

 𝑥, 𝜆 − 𝑥 , the constraint −
𝑞

𝑝
< 𝑥 <

𝑞

𝑝
 is always satisfied automatically if the step length is a number between  

−
𝑞

𝑝
𝑎𝑛𝑑

𝑞

𝑝
 . 

Let𝑃 𝜆 = −

 

 
 𝑞 

𝜕𝑓  𝑥 

𝜕𝑥 𝑠
−𝜆 

𝛽𝑝+ 𝛽2𝑝2 2(
𝜕𝑓  𝑥 

𝜕𝑥 𝑠
−𝜆) 

2
+

𝑞 
𝜕𝑓  𝑥 

𝜕𝑥 𝑠
−𝜆 

𝛽𝑝+ 𝛽2𝑝2+𝑞 
𝜕𝑓  𝑥 

𝜕𝑥 𝑠
−𝜆 

 

 
 

 

Given any point 𝑥𝜖𝐹  with −
𝑞

𝑝
< 𝑥 <

𝑞

𝑝
𝑓𝑜𝑟𝑑 𝑥, 𝜆 − 𝑥  to become a feasible descent direction as ℎ 𝑥, 𝛽 =

𝑓 𝑥 + 𝛽𝑏(𝑥) and we want to solve              𝑝 𝜆 = 0      

    (2.10) 

𝜆 𝑥 =
1

2𝑞
 
𝜕𝑓  𝑥 

𝜕𝑥𝑠
+

𝜕𝑓 𝑥 

𝜕𝑥 𝑖
 is a solution of (2.10) 

Since  ∇𝑓(𝑥)/𝑥𝜖𝛽  is bounded hence  𝜆 𝑥 : 𝑥𝜖𝐵  is bounded. Using the feasible descent direction 𝑑 𝑥, 𝜆(𝑥) −

𝑥  and 𝜆 𝑥 =
1

2𝑞
 
𝜕𝑓  𝑥 

𝜕𝑥𝑠
+

𝜕𝑓 𝑥 

𝜕𝑥𝑠
  for updating Lagrange multiplier λ we have developed an algorithm for 

approximating a solution of  

𝑚𝑖𝑛: 𝑓 𝑥 =
1

2
𝑥𝑇 𝑊 − 𝛼𝐼 𝑥 

subject to 𝑥𝑠 + 𝑥𝑡 = 0 

𝑥𝑖𝜖 −1,1  , 𝑖 = 1,2, … . 𝑛 

Let 𝛽𝑚 ,𝑚 = 1,2, …. be any given sequence of positive numbers such that 𝛽1 > 𝛽2 > ⋯ and lim𝑚→∞ 𝛽𝑚 = 0.The 

value of  𝛽1 should be sufficiently large so that ℎ(𝑥, 𝛽1) is convex over −
𝑞

𝑝
< 𝑥 <

𝑞

𝑝
 . 

Let 𝑥0 be an arbitrary non zero interior point of B satisfying 𝑒𝑠𝑡
𝑇 𝑥0 = 0 . For m=1,2,… starting at 𝑥𝑚−1 , we can 

generate the feasible descent direction 𝑑 𝑥, 𝜆 𝑥  − 𝑥to search for better feasible interior point 𝑥𝑚 satisfying 

𝑑(𝑥𝑚 , 𝜆 𝑥𝑚 ) = 0 

 

III. MAIN RESULTS 
Using the above lemmas we can prove the following main theorem. 

Theorem:For𝛽 = 𝛽𝑘every limit point of 𝑥𝑘 , 𝑘 = 1,2, …. generated by       𝑥𝑥+1 = 𝑥𝑘 + 𝜇𝑘(𝑑 𝑥𝑘 , 𝜆 𝑥𝑘  − 𝑥𝑘) 

is a stationary point of min ℎ 𝑥, 𝛽 = 𝑓 𝑥 + 𝛽𝑏(𝑥) subject to 𝑥𝑠 + 𝑥𝑡 = 0 

Proof:𝛽𝑘 , 𝑘 = 1,2, … be any given sequence of positive numbers such that  𝛽1 > 𝛽2 > ⋯  and lim𝑘→∞ 𝛽𝑘 =
0.The value of 𝛽1 should sufficiently large so that ℎ𝑥,𝛽 is convex over−𝑞𝑝<𝑥<𝑞𝑝. 

Let 𝑥0 be an arbitrary non zero interior point of B satisfying 𝑒𝑠𝑡
𝑇 𝑥0 = 0 for k=1,2,… starting from 𝑥𝑘−1  ,we 

derive the feasible descent direction 𝑑 𝑥𝑘 , 𝜆 𝑥𝑘  − 𝑥𝑘 = 0 , if  𝑑 𝑥𝑘 , 𝜆 𝑥𝑘  − 𝑥𝑘 < 1 

When β is sufficiently small so that a feasible solution which every component equal to either -1 or 1 can be 

generated by rounding off 𝑥𝑘 . 

Let𝛽𝑘+1 = 𝜃𝛽𝑘  

𝑥𝑘+1 = 𝑥𝑘 + 𝜇𝑘(𝑑 𝑥𝑘 , 𝜆 𝑥𝑘 − 𝑥𝑘 ) 

Satisfying ℎ 𝑥𝑘+1 , 𝛽𝑘 = min𝜇 [0,1] ℎ[𝑥𝑘 + 𝜇(𝑑 𝑥𝑘 , 𝜆 𝑥, 𝑘 − 𝑥𝑘 , 𝛽𝑘  
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Let 𝑎𝑚𝑎𝑥 = max1≤𝑖≤𝑛𝑚𝑎𝑥𝑥𝜖𝐵  
𝜕𝑓 𝑥 

𝜕𝑥 𝑖
− 𝑣𝑖(𝑥)  

 

with𝑥𝑚𝑖𝑛 =  𝑥1
𝑚𝑖𝑛 , 𝑥2

𝑚𝑖𝑛 , … . 𝑥𝑛
𝑚𝑖𝑛  

𝑇
 , 𝑥𝑚𝑎𝑥 =  𝑥1

𝑚𝑎𝑥 , 𝑥2
𝑚𝑎𝑥 , … . 𝑥𝑛

𝑚𝑎𝑥  𝑇   , 𝜇[0,1] 

𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛  𝑥𝑖
0,

−𝑎𝑚𝑎𝑥

𝛽𝑝 +  𝛽2𝑝2 + 𝛼𝑚𝑎𝑥
2

  

𝑥𝑖
𝑚𝑎𝑥 = 𝑚𝑎𝑥  𝑥𝑖

0,
−𝑎𝑚𝑎𝑥

𝛽𝑝 +  𝛽2𝑝2 + 𝛼𝑚𝑎𝑥
2

  , 𝑖 = 1,2, …𝑛 

Since  ∇𝑓 𝑥 : 𝑥𝜖𝐵  and  𝜆 𝑥 : 𝑥𝜖𝐵  are bounded then 𝑎𝑚𝑎𝑥  is bounded. 

Thus −
𝑝

𝑞
< 𝑥𝑚𝑖𝑛 ≤ 𝑑(𝑥, 𝜆 𝑥 ) ≤ 𝑥𝑚𝑎𝑥 <

𝑝

𝑞
 

For any𝑥𝜖𝐵  and 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥  , 𝑘 = 1,2, …. 
Therefore no limit of 𝑥𝑖

𝑘 , 𝑘 = 1,2… is equal to either -1 or 1 for i=1,2,…n 

From the above lemma we obtain 𝑑 𝑥𝑘 , 𝜆 𝑥𝑘 − 𝑥𝑘  is a feasible solution of  min ℎ 𝑥, 𝛽 = 𝑓 𝑥 + 𝛽𝑏(𝑥) 

subject to 𝑥𝑠 + 𝑥𝑡 = 0 

Let 𝑋 =  𝑥𝜖𝐹: 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥   

and𝛺 =  𝑥𝜖𝑋: 𝑑 𝑥, 𝜆 𝑥  − 𝑥 = 0  ,for any 𝑥𝜖𝑋 

Let 𝐴 𝑥 =  𝑥 + 𝜇∗(𝑑 𝑥, 𝜆 𝑥  − 𝑥  

𝜇∗𝜖 0,1 , ℎ(𝑥 + 𝜇∗ 𝑑 𝑥, 𝜆 𝑥  − 𝑥 , 𝛽) =min𝜇𝜖 [0,1] ℎ(𝑥 + 𝜇 𝑑 𝑥, 𝜆 𝑥  − 𝑥 , 𝛽) 

Now we will prove A(x) is closed at every point 𝑥𝜖𝑋 − 𝛺 

Let 𝑥 be any arbitrary point of 𝑋 − 𝛺 

Let 𝑥𝑟𝜖𝑋 − 𝛺  , 𝑟 = 1,2, … be a sequence convergent to 𝑥and 𝑦𝑟𝜖𝐴(𝑥 ),r=1,2,…n be a convergent sequence 

converges to 𝑦. 

To prove that 𝐴(𝑥) is closed ,we need to show that 𝑦 𝜖𝐴(𝑥). 

From 𝑥𝑟𝜖𝑋 − 𝛺 and 𝑥𝜖𝑋 − 𝛺  we have 𝑑 𝑥𝑟 , 𝜆 𝑥𝑟  − 𝑥𝑟 ≠ 0 and  𝑥, 𝜆 𝑥   − 𝑥 ≠ 0  , where 𝑑 𝑥, 𝜆 𝑥   is 

continous.Thus 𝑑 𝑥𝑟 , 𝜆 𝑥𝑟   converges to 𝑑 𝑥, 𝜆 𝑥    as 𝑟 → ∞ .Since 𝑦𝑟𝜖𝐴 𝑥𝑟  then there exists a number  

𝜇∗𝜖 0,1  satisfying𝑦𝑟 = 𝑥𝑟 + 𝜇∗𝑑 𝑥𝑟 , 𝜆 𝑥𝑟  − 𝑥𝑟𝜖𝐴 𝑥𝑟  

From  𝑥𝑟 , 𝜆 𝑥𝑟  − 𝑥𝑟 ≠ 0 , we obtain  

𝜇𝑟
∗ =

 𝑦𝑟 − 𝑥𝑟 

𝑑 𝑥𝑟 , 𝜆(𝑥𝑟) − 𝑥𝑟 
 

And as ,𝑟 → ∞ 

𝜇∗ − 𝜇∗   =
 𝑦 − 𝑥  

𝑑 𝑥,  (𝜆(𝑥 ))  − 𝑥  
 

with𝜇 𝜖 0,  1  ,𝑦  =𝑥 +𝜇∗    𝑑(𝑥 ) (𝜆(𝑥 ))  − 𝑥 ) ,since 𝑦𝑟𝜖𝐴(𝑥𝑟) 

we have h(𝑦𝑟 ; 𝛽) ≤ ℎ𝑥𝑟 + 𝜇 𝑑 𝑥𝑟 , 𝜆(𝑥𝑟) − 𝑥𝑟 , 𝛽) 𝑓𝑜𝑟𝑎𝑛𝑦𝜇 ∈  0,  1 . 

It implies that h (𝑦 , 𝛽)≤ ℎ(𝑥 +𝜇(𝑑(𝑥 ), (𝜆(𝑥 )) – 𝑥 )), 𝛽) 

For any𝜇𝜖 0,  1 ,which proves that h(𝑦 , 𝛽)=minℎ(𝑥 +𝜇(𝑑(𝑥 ), 𝜆(𝑥 )) – 𝑥 ), 𝛽) 

𝜇𝜖 0,  1  
According to the definition of A(x),it follows that𝑦 ∈ 𝐴 𝑥  , 𝑠𝑖𝑛𝑐𝑒𝑋𝑖𝑠𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑎𝑛𝑑𝑥𝑘𝜖𝑋, 𝑘 = 1,2, ……… .. 
Then by Bolzonoweierstrass theorem we can extract a convergent subsequence from the sequence 𝑥𝑘 , 𝑘 =
1,2, ……… .. 
Let 𝑥𝑘𝑖 , 𝑖 = 1,2, ……… .. be a convergent subsequence of the sequence 𝑥𝑘 , 𝑘 = 1,2, ……… .. 
Let 𝑥∗ be the limit point of the sequence. Clearly as   𝑘 → ∞ , ℎ(𝑥𝑘 , 𝛽) converges to ℎ(𝑥∗, 𝛽) , since  ℎ(𝑥, 𝛽) is 

continuous and  ℎ(𝑥𝑥+1 , 𝛽) < ℎ(𝑥𝑥 , 𝛽), 𝑘 = 1,2, …. 

Considering the sequence 𝑥𝑗
𝑘+1 , 𝑗 = 1,2, … and by (2.10) 

We can write 𝑥𝑗
𝑘+1 = 𝑥𝑘𝑖 + 𝜇𝑘𝑗 (𝑑(𝑥𝑘𝑗 , 𝜆 𝑥𝑘𝑗  − 𝑥𝑘𝑗 ) 

andℎ(𝑥𝑗
𝑘+1, 𝛽) = min ℎ( 𝑥𝑘𝑗 + 𝜇(𝑑 𝑥𝑘𝑗 , 𝜆  𝑥𝑘𝑗 − 𝑥𝑘𝑖 , 𝛽 

According to definition of 𝐴(𝑥) we have 𝑥𝑗
𝑘+1𝜖𝐴(𝑥𝑘𝑖) , 𝑗 = 1,2,…. are bounded, then there exist  𝑥𝑗

𝑘+1 , 𝑗𝜖𝑘 a 

convergent subsequence. If  𝑥∗ ∉ 𝛺and 𝐴(𝑥∗) is closed then 𝑥∗𝜖𝐴(𝑥∗) and we have ℎ 𝑥∗, 𝛽 < ℎ 𝑥𝑘 , 𝛽  
Which contradicts that ℎ 𝑥𝑘 , 𝛽  converges as → ∞𝑖. 𝑒𝑥∗𝜖𝛺 . 

The use of logarithmic barrier function finds a minimal point for solving linearity constrained continuous 

optimization problem to s-t max cut problem. 
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IV. NUMERICAL EXAMPLE: 
In order to establish the effectiveness and efficiency of the algorithm for obtaining optimization,we have solved 

by using MATLAB. 

For our solution we have consider 𝛼= 0.000001 

𝛽0 =1-Smin/2 with Sminbeing the minimum eigenvalue of W-𝛼I. 

In our computation we have taken following variables. 

NI=No. of iteration 

OBJM =Objective value of (1.4) 

OBJU =Greatest integer value of 

max :
1

4
 𝑤𝑖𝑗 (1 − 𝑥𝑖𝑗 )

𝑖𝑗

 

Subject to trace (𝑒𝑠𝑡𝑒𝑠𝑡
𝑇 𝑋) = 0 

𝑋𝑖𝑖 = 1  , 𝑖 = 1,2, …𝑛 

𝑥 ≥0, RATIO=(OBJU-OBJM)/OBJU 

In the computation we have considered weights 𝑤𝑖𝑗 are the random integer between 1 to 50 and theresults 

computed are given in the following table for the value of m=.6 

Table for the numerical results for m=.6 

 
No of Test NI OBJM OBJU RATIO 

1 100 35670 35798 .03 

2 150 36150 37630 .02 

3 200 46260 47350 .02 

4 250 20350 21450 .02 

5 300 35672 36505 .02 

 

From the above computation it shows that the ratio is nearly equal to .02 and it proves the convergence of the 

solution to the local minimum point and shows that the algorithm is an effective one. 

 

V. CONCLUSION: 
In this paper we have taken a general logarithmic barrier function to solve the continuous optimization 

problem by transforming it in to s-t max-cutproblem and developed an algorithm is basedon the barrier 

generalized logarithm the barrier function. The algorithm developed for generatingdecreasing sequence of 

solution which converges at least a local minimum point of (2.1) with everycomponent equal to either 
−𝑞

𝑝
𝑡𝑜

𝑞

𝑝
. 
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