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Abstract:

Wiener systems identification is studied in presence of possibly infinite-order linear dynamics
and static nonlinearity. The problem of identifying Wiener models is addressed in the presence of hard
nonlinearity. This latter is not required to be invertible of arbitrary-shape. Moreover, the prior
knowledge of the nonlinearity type, being e.g. saturation effect, dead zone or preload, is not required.
Using sine excitations, and getting benefit from model plurality, the identification problem is presently
dealt with by developing a two-stage frequency identification method.
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1. Introduction

The Wiener model is a series connection of a linear dynamic bloc and a memoryless nonlinearity (Fig.
1). When both parts are parametric, the identification problem has been dealt with using stochastic methods (e.g.
Wigren, 1993, 1994; Wills and Ljung, 2010; Vanbeylen et al., 2009; Vanbeylen and Pintelon, 2010) as well as
deterministic methods (e.g. Voros, 1997, 2010; Bruls et al., 1999). The stochastic methods enjoy local or global
convergence properties under various assumptions e.g. the system inputs should be persistently exciting (PE) or
Gaussian and the system nonlinearity is invertible. The last limitation has recently been overcome by Wills et al.
(2011). Multi-stage methods, involving two or several stages, have been proposed in (e.g. Westwick and
Verhaegen, 1996; Lovera et al., 2000) and their consistency was ensured if the inputs are Gaussian and the
nonlinearity is odd. Deterministic parameter identification methods consist in reformulating the problem as an
optimization task, generally coped with using various relaxation techniques. Then, local convergence properties
ensured in presence of PE inputs. Nonparametric Wiener systems (where none of the linear subsystem or the
nonlinear element assumes a priori known structure) have been dealt with using both stochastic and frequency
methods. In the stochastic methods (e.g. Greblicki and Pawlak, 2008; Mzyk, 2010), the nonlinearity is generally
determined using variants of the kernel regression estimation technique while the (unknown) coefficients of a
FIR/IIR approximation of the linear part are estimated using cross-correlation analysis. Several assumptions are
needed e.g. Gaussian inputs, FIR linear dynamics, Lipschitzian nonlinearity. In frequency methods, the linear
subsystem frequency response and the nonlinearity map are determined in two or several stages (e.g. Giri et al.,
2013, 2014; Brouri et al., 2014).

In this paper. the problem of identifying Winer systems is addressed, for simplicity. in the continuous-time. Unlike many
previous works. the model structure of the linear subsystem is entirely unknown. Furthermore. the system nonlinearity is of
hard (Figs. 2a-b) type and is not required to be invertible.

The present strategy is allowed to interest a wide range of the system nonlinearity (Figs. 2a-b). The identification problem
amounts to determining an accurate estimate of the (nonparametric) frequency response G{jp). for a set of frequencies
(,...m,) . and the nonlinearity. The present identification method is a two-stage: the system nonlinearity is identified first,
using simple constant inputs. and based upon in the second stage to identify the linear subsystem.

The paper is organized as follows: the identification problem is formulated in Section 2: the nonlinear operator identification is
coped with in Section 3: the linear subsystem frequency response determination is investigated in Section 4: simulation results
are presented in Section 6.
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Fig. 1. Wiener model with hard nonlinearity _F (.}
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Fig. 2Zb. Nonlinearity hard

Fig. 2a. Nonlinearity hard with preload and dead zone

2. Identification of system nonlinearity
Standard Wiener systems consist of a linear dynamic subsystem G(s) followed in series by a memoryless nonlinear operator

f(.) (Fig. 1). More specifically, the Wiener system under study is analytically described by the following equations:

x() =g *u(r) with g() =17 (G(s)) (1)
yO=w)+ &0 with  w(r)= fx(0) @

where (1) and y(f) denote the control input and the measured output; x(7) and w(¢) are inner signals not accessible to
measurement. The exfra input #(r) accounts for measurement noise and other modeling effects. It is supposed to be zero-mean
ergodic and uncorrelated with the confrol input u(r) . The symbol * in (1) refers to the convolution operator and L to the
Laplace transform-inverse.

Accordingly, g(r) denotes the impulse response of the linear subsystem and G(s) its transfer function. It is just supposed that
g € L, so that the whole system becomes BIBO stable making possible open-loop system identification, with nonzero static
gain (i.e. G(0) = 0). Interestingly, G(s) is allowed to be infinite order. The system nonlinearity f(.) is of hard (Figs. 2a-b)
type and is not required to be invertible. Except for the above assumption f{.) and G(s) are arbitrary. In particular, the transfer
function G(s) is allowed to be non-parametric and of unknown structures. The static nonlinear element f(.) may be
noninvertible.

The problem complexity also lies in the fact that the non-accessible internal signals (x(7), w(f) and &) are not uniquely

defined from an input-output viewpoint. In effect, if the couple (G(s), f (x)) is solution of the identification problem then, any

\
model of the form [% f (Kr)J is also solution of this problem whatever the real number K = 0. Therefore, without

reducing the problem generality, one can assume G(0) =1.
Accordingly. the system to be identified is described by the transfer functions:

_G()

= 3
G(0)

G(s)

and the nonlinearity:

fla®)= £(G0)(2)) (S

The modified system to be identified (i.e. f()) and G(s)) is the unique system satisfied the property: G(0)=1.
Then, the considered system is excited by simple constant inputs:

H(f)zbrj for j=1...n (5)
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where the number » is arbitrarily chosen by the user, preferably sufficiently large. On the other hand. using the assumption of
asymptotic stability of the linear subsystem and (3)-(5), the internal signal x(r) is constant (i.e. x(¢) — X ). Then, one has,

in the steady-state:
x(H=U, for j=1...n ©)
Accordingly, it is readily seen. using (2). (4) and (6). that the undisturbed output is also constant. in the steady-state, i.e.
w(r) — W . This latter can be expressed as:
f—»c ¢

w.=flU;) for j=1..n (&)

Then, the system output is constant up to noise (in the steady-state). Finally, we can conclude using (7) that W, (for j=1...n)
only depends on the system nonlinearity 7(.) and the input signal. Therefore. using the fact £(r) is zero-mean, it follows from
(2) and (7) that, the estimate of the steady-state undisturbed output #, (j =1...n) can be easily recovered using the following
estimator:

- N .
FV,-(N):iZy(k) for j=1...n (®)
Ni=
where NV is any sufficiently large integer. Specifically. , can be recovered by averaging y(f) on a sufficiently large interval.
Then, a set of points (U Fw }) _ (U .ﬁ") (with j=1...n) belonging to nonlinearity 7(,) can be determined. Finally, an
s i i ¥

accurate estimate f_\_(_) of £(.) can be easily obtained. These results lead to the following proposition:

Proposifion 1. Consider the problem statement described by equations (1)-(2) and excited by the constant inputs (5). Then, one
has:

1) I%;.(N) converges in probability to W, (as N — = ).

2) The nonlinearity _ﬁ, (.) converges in probability to 7(.) (as N — ).

Proof. Partl. From the expressions (2) and (8) one easily gets:

. N N N i
BN =~ S+ LS st -w,+ LS st for j=1..n ©
! NI Y NI =

Using the fact that. the noise signal {EO} is zero-mean ergodic sequence, the last term in (9) converges to zero.

This establishes Part 1.

Parf2. It readily follows from Part 1 and (7) that. the estimate points (U f\ w )) converge to (U Fw )] (Jj=1...n). This
4 - s i ¥

completes the proof of Proposition 1.

3. Frequency gain identification

The aim of this subsection is to establish an estimator of the linear subsystem. The complex gain G(jw) is characterized by the
modulus gain |G(ja))| and the phase @(@) = ZG(jw) = arg{G(jm)) . The identification problem under study is dealt using a
(7 7o) 7=1en)
-i‘(bj,j;,.{LJ)},J =1-onj,aset
of segments of 7(.) is obtained (Figs. 2a-b). For reasons of identifiability, at least one segment must have a non-zero slope. Let
g designates any segment have a non-zero slope. Then, the nonlinear system described in subsection 1 is excited with a given
sine input:

method based on the frequency approach. Firstly, by successively connecting the estimated points

u(t) =, + U sin(ex) (10)

The choice of u, in (10) can be performed using the experimental data of nonlinearity estimator. It can take any value in the
segment g. Accordingly. all resulting signals depend on the amplitude/frequency couple (U7, ®) . In steady state. these signals

write:
Xy () = 11y + U|G(j)|sin (@t +@(e2)) (11a)
My o) = 1 (X0 (D) (11b)
Vo) =Wy ,(D+ (@) (11c)

Note that, the signal Wyo{f) is periodic with period 27/ and, accordingly, the working point (Iym(f)-“’cm(f)) describes a
closed cycle. Consequently, if x(f) spans only the segment g. one gets:

ui;:@(t) = Sg xL;_w(f)+Iz 1z
where (Sq, r ) is the couple parameters of segment ¢ (Figs. 2a-b). s, and P, can be determined using the experimental data of
nonlinearity estimator. If necessary, excite the system to be identified with other constant inputs 7 . Then, it readily follows
from (11a) and (12): )

Wy (@) =S, U|G(j )| sin( et +@(e))+ B, +S, 1, (13)
Then, under these conditions, the undisturbed output Wy .(f) is a sine signal (in the steady state) with an offset P +S, ug-
Furthermore, the curve (U|G(j@)|sin(wr+@(@)).w, (1)) is a straight line segment with slope 5 U |G(je)|- If 5, >0 (resp.

5, < 0). let  the first time, in the increasing (resp. in the decreasing) stages, satisfying:
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Wy ,(F)=F,+5, i, (14a)
The expression (14a) implies:

S, U|G(jo)|sin (o7 +@(w))=0 (14b)
Then, one has the following relation between g() and I:

T=-@(®w)/w (modulo2m) (15)

These results imply that, the complex frequency gains of the linear subsystem can be recovered if the undisturbed output
Wy (@) is accessible to measurement. At this stage, W, (f) is not measurable.

Fortunately, an accurate estimator of W.»(f) exists, thanks to the (steady-state) periodicity of Wy.»(f) and the ergodicity of the
noise &(7). The estimator, denoted 1+, (). is obtained by performing a T- periodic averaging with T =27 /e (Ljung,

1999, p. 232):

13 27 27
Wi, (O=—Sy, (t+k=") for rclo 2= (16a)
‘L .c._N( ) N; L.w( @ ) |: @ |
ﬁ;‘_-’.c__’v(r +k%) = ﬁi’.(o._’\'(r) for k=123... (16]))

where NV is any sufficiently large integer. The estimator (16a-b) is uniformly consistent i.e. 1iy, ., () converges (w.p.1 as
N — w0 ) to uy, ,(7), whatever f. Finally, it follows (14b) and (15) the gain modulus and the phase of the linear subsystem can

be easily obtained using (16a-b).

4. Conclusions

The problem of system identification is addressed for Wiener systems where the linear subsystem, described by
(1-2), may be parametric or not, finite order or not. The nonlinear element is of hard type. The latter are allowed
to be noninvertible. The identification problem is dealt with using a two-stage approach combining frequency.
Data acquisition in presence of constant inputs is performed in the first stage following the procedure of Section
2. Then, an accurate estimate of the system nonlinearity can be obtained. Data acquisition in presence of sine
input excitations is performed in the first stage following the procedure of Table 1. Finally, the transfer function
response is identified in the second stage using the algorithm described Section 3 and the estimator (16a-b). All
involved estimators are consistent. To the author's knowledge no previous study has solved the identification
problem for a so large class of Wiener systems
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