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1. Introduction 
The Wiener model is a series connection of a linear dynamic bloc and a memoryless nonlinearity (Fig. 

1). When both parts are parametric, the identification problem has been dealt with using stochastic methods (e.g. 

Wigren, 1993, 1994; Wills and Ljung, 2010; Vanbeylen et al., 2009; Vanbeylen and Pintelon, 2010) as well as 

deterministic methods (e.g. Vörös, 1997, 2010; Bruls et al., 1999). The stochastic methods enjoy local or global 

convergence properties under various assumptions e.g. the system inputs should be persistently exciting (PE) or 

Gaussian and the system nonlinearity is invertible. The last limitation has recently been overcome by Wills et al. 

(2011). Multi-stage methods, involving two or several stages, have been proposed in (e.g. Westwick and 

Verhaegen, 1996; Lovera et al., 2000) and their consistency was ensured if the inputs are Gaussian and the 

nonlinearity is odd. Deterministic parameter identification methods consist in reformulating the problem as an 

optimization task, generally coped with using various relaxation techniques. Then, local convergence properties 

ensured in presence of PE inputs. Nonparametric Wiener systems (where none of the linear subsystem or the 

nonlinear element assumes a priori known structure) have been dealt with using both stochastic and frequency 

methods. In the stochastic methods (e.g. Greblicki and Pawlak, 2008; Mzyk, 2010), the nonlinearity is generally 

determined using variants of the kernel regression estimation technique while the (unknown) coefficients of a 

FIR/IIR approximation of the linear part are estimated using cross-correlation analysis. Several assumptions are 

needed e.g. Gaussian inputs, FIR linear dynamics, Lipschitzian nonlinearity. In frequency methods, the linear 

subsystem frequency response and the nonlinearity map are determined in two or several stages (e.g. Giri et al., 

2013, 2014; Brouri et al., 2014).  

 

 

Abstract: 
Wiener systems identification is studied in presence of possibly infinite-order linear dynamics 

and static nonlinearity. The problem of identifying Wiener models is addressed in the presence of hard 

nonlinearity. This latter is not required to be invertible of arbitrary-shape. Moreover, the prior 

knowledge of the nonlinearity type, being e.g. saturation effect, dead zone or preload, is not required. 

Using sine excitations, and getting benefit from model plurality, the identification problem is presently 

dealt with by developing a two-stage frequency identification method. 
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4. Conclusions 
The problem of system identification is addressed for Wiener systems where the linear subsystem, described by 

(1-2), may be parametric or not, finite order or not. The nonlinear element is of hard type. The latter are allowed 

to be noninvertible. The identification problem is dealt with using a two-stage approach combining frequency. 

Data acquisition in presence of constant inputs is performed in the first stage following the procedure of Section 

2. Then, an accurate estimate of the system nonlinearity can be obtained. Data acquisition in presence of sine 

input excitations is performed in the first stage following the procedure of Table 1. Finally, the transfer function 

response is identified in the second stage using the algorithm described Section 3 and the estimator (16a-b). All 

involved estimators are consistent. To the author's knowledge no previous study has solved the identification 

problem for a so large class of Wiener systems 
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