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I. Introduction 

Cryptography is the branch of cryptology dealing with the design of algorithms for encryption and 
decryption, intended to ensure the secrecy and/or authenticity of message. The Digital Signature Algorithm 
(DSA) was proposed in August 1991 by the U.S. National Institute of Standards and Technology (NIST). 
Digital signature authentication schemes provide secure communication with minimum computational cost 
for real time applications, such as electronic commerce, electronic voting, etc. The sender generates the 
signature of a given message using his secret key; the receiver then verifies the signature by using sender's 
public key. The ECDSA have a smaller key size, which leads to faster computation time and reduction in 
processing power, storage space and bandwidth. This makes the ECDSA ideal for constrained devices such as 
pagers, cellular phones and smart cards. The Elliptic-Curve Digital Signature Algorithm (ECDSA) is a Digital 
Signature Scheme based on ECC. ECDSA was first proposed in 1992 by Scott Vanstone in response of NIST 
(Nation Institute of Standards and Technology) request for public comments on their proposal for Digital 
Signature Schemes[1]. 
Digital Signature authenticated schemes, have the following properties. 

1.  Confidentiality. Secret information shared between sender and receiver; any outsider cannot read the 

information. 

2. Authentication. The sender imprints his identity by means of the digital signature, which only the 

designated receiver can unravel and verify. An anonymous adversary cannot send a malicious message 

impersonating the genuine sender, because he does not have the necessary tools to generate the signature. 
3. Non-repudiation. The signature firmly establishes the identity of the sender. The sender cannot deny 

having sent the message and the signature. 
In this paper we discuss ECC in detail and ECDSA Implementation with different Text Message encryption 

methods and compared the results. 

 

 

 

ABSTRACT: 
Digital Signatures are considered as digital counterparts to handwritten signatures, and they are the 
basis for validating the 
authenticity of a connection. It is well known that with the help of digital signature, forgery of digital 
information can be identified and it is widely used in e-commerce and banking applications. Elliptic 

curve digital signatures (ECDSA) are stronger and ideal for constrained environments like smart cards 

due to smaller bit size, thereby reducing processing overhead.  We  have  implemented  ECDSA  over  

Elliptic  Curve  (EC)  P-192  and  P-256  using  various  Text  Message encryptions which are Variable 

Size Text Message(VTM), Fixed Size Text Message(FTM) and Text Based Message(TBM) encryption 

methods and compared their performance. In the existing Variable Text Based Message used the plain 

message for generating digital signature but in the new approach, we have converted plain message to 

digested message using SHA algorithm and then created digital signature which is more faster than 

existing approach. 
 
Keywords: Digital Signature, Elliptic Curve Digital Signature Algorithm, Elliptic Curve Cryptography, 
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II. Elliptic Curve Discrete Logarithm Problem 
An elliptic curve E, [2] defined over a field K of characteristic ≠ 2 or 3 is the set of solutions (x, y)  K' 

to the equation y2 = x3 + ax + b                                  (1) 

a, b  K (where the cubic on the right has no multiple roots). Two nonnegative integers, a and b, less than p that 
satisfy: 

4a3 + 27b2 (mod p) = 0                      (2) 
Then Ep (a, b) denotes the elliptic group mod p whose elements (x, y) are pairs of nonnegative integers less than 
p satisfying: 

y2 = x3 + ax + b (mod p)                     (3) 
together with the point at infinity O. 

The elliptic curve discrete logarithm problem(ECDLP) can be stated as follows. Fix a prime p and an elliptic 

curve. 

Q = xP                                                 (4) 

where xP represents the point P on elliptic curve added to itself x times. Then the elliptic curve discrete 
logarithm problem is to determine x given P and Q. It is relatively easy to calculate Q given x and P, but it is 

very hard to determine x given Q and P. 
 
ECC is based on ECDLP. ECDH and ECDSA are cryptographic schemes based on ECC. The best known 

algorithm for solving ECDLP is Pollard-Rho algorithm which is fully exponential having a running time of 

√(Π*n /2). 

 

III. Elliptic Curve Cryptography 
The Elliptic curve cryptosystems (ECC) were invented by Neal Koblitz [2] and Victor Miller[3] in 

1985. They can be viewed as elliptic curve analogues of the older discrete logarithm (DL) cryptosystems in 

which the subgroup of Zp
*  is replaced by the group of points on an elliptic curve over a finite field. The 

mathematical basis for the security of elliptic curve cryptosystems is the computational intractability of the 
elliptic curve discrete logarithm problem (ECDLP) [4]. 
ECC is a relative of discrete logarithm cryptography. An elliptic curve E over Zp  as in Figure 1 is defined in 

the 
Cartesian coordinate system by an equation of the form: 
 

y2 = x3 + ax + b                                (5) 

 

where a, b  Zp, and 4a3 + 27b2 (mod p) ≠ 0 (mod p), together with a special point O, called the point at 

infinity. The set 

E(Zp) consists of all points (x, y), x  Zp, y  Zp, which satisfy the defining equation, together with O. 
Each value of a and b gives a different elliptic curve. The public key is a point on the curve and the private key 
is a random 
number. The public key is obtained by multiplying the private key with a generator point G in the curve. 

The definition of groups and finite fields, which are fundamental for the construction of elliptic curve 

cryptosystem are discussed in next subsections. 

 
3.1. Groups 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. An Elliptic Curve
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A group with an operation * is defined on pairs of elements of G. The operations satisfy the following properties: 

      Closure: a * b G for all a, b G 

      Associativity: a * (b * c) = (a * b) * c for all a, b, c G 

      Existence of Identity: There exists an element e G, called the identity, such that e * a = a * e = a for all a 

G. 

  Existence of Inverse: For each a G there is an element bG such that a * b = b * a = e. The element b 
is called the inverse of a. 

Moreover, a group G is said to be abelian if a * b = b * a for all a, b G. The order of a group G is the number 
of elements in G. 

 

3.2.  Finite Field 
A finite field consists of a finite set of elements together with two binary operations called 

addition and multiplication, which satisfy certain arithmetic properties. The order of a finite field is the 
number of elements in the field. There exists a finite field of order q if and only if q is a prime power. If q is a 
prime power, then there is essentially only one finite field of order q; this field is denoted by Fq. There are, 
however, many ways of representing the elements of Fq. Some representations 
may lead to more efficient implementations of the field arithmetic in hardware or in software. If q = pm where 
p is a prime and m is a positive integer, then p is called the characteristic of Fq and m is called the extension 
degree of Fq. 
 

3.2.1. Prime Field Fp 

Let p be a prime number. The finite field Fp called a prime field, is comprised of the set of integers 
{0,1,2,….,p-1} with the 
following arithmetic operations: 

  Addition: If a, bFp  then a + b = r, where r is the remainder when a + b is divided by p and 0 ≤ r ≤ 
p-1 known as addition modulo p. 

  Multiplication: If a, b Fp then a.b = s, where s is the remainder when a.b is divided by p and 0 ≤ s ≤ 
p-1 known as multiplication modulo p. 

    Inversion: If a is non-zero element in Fp, the inverse of modulo a modulo p, denoted by a-1, is the unique 

integer cFp for which a.c = 1. 

 

3.2.2. Binary Field F2
m 

The field F2
m, called a characteristic two finite field or a binary finite field, can be viewed as a vector 

space of dimension m over the field F2 which consists of the two elements 0 and1. That is, there exist m 

elements α0, α1,…, αm-1 in F2
m such that each element α can be uniquely written in the form: 

 

α= a0 α0 + a1 α1+……….+am-1 αm-1, where ai{0,1} 

 
Such a set {α0, α1,…, αm-1} is called a basis of F2

m over F2. Given such a basis, a field element α can be 
represented as the bit string (a0  + a1  ……….+am-1) Addition of field elements is performed by bitwise 
XOR-ing the vector representations. The multiplication rule depends on the basis selected. ANSI X9.62 
permits two kinds of bases: polynomial bases and normal bases. 

 

3.2.3. Domain Parameters 
The  domain parameters for  ECDSA consist of  a  suitably chosen  elliptic curve  E  defined  over  

a  finite  field  Fq   of characteristic p, and a base point G E(Fq). Domain parameters may either be shared by 

a group of entities, or specific to a single user. To summarize, domain parameters are comprised of: 
1.    A field size q, where either q = p, an odd prime, or q = 2m 

2.    An indication FR (field representation) of the representation used for the elements of Fq 

3.    (optional) a bit string seed E of length at least 160 bits 

4. Two field elements a and b in Fq which define the equation of the elliptic curve E over Fq' (i.e., y2 =    

x3 + ax + b in the case p > 3, and y2 + xy = x3 + ax + b in the case p = 2) 

5.    Two field elements xG and yG in Fq which define a finite point G = (xG, yG) of prime order in E(Fq) 

6.    The order of the point G, with n>2160 and n > 4√q and 

7.    The cofactor h = #E(Fq)/n 
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3.3.  Elliptic Curve Operations over Finite Fields[8] 
The main operation is Point multiplication is achieved by two basic elliptic curve operations. 
i.       Point addition, adding two points P and Q to obtain another point R i.e. R= P + Q. ii.       Point doubling, 

adding a point P to itself to obtain another point R i.e. R = 2P. 

 

3.3.1. Point Addition 
Point addition is the addition of two points P and Q on an elliptic curve to obtain another point R on 

the same elliptic curve. 
Consider two points P and Q on an elliptic curve as shown in Figure 2. If P ≠ -Q then a line drawn through the 

points P and Q will intersect the elliptic curve at exactly one more point –R. The reflection of the point –R 

with respect to x-axis gives the point R, which is the result of addition of points P and Q. Thus on an elliptic 

curve R = P + Q. If Q = -P the line through this point intersect at a point at infinity O. Hence P + (-P) = O. A 
negative of a point is the reflection of that point with respect to x-axis. 
 
 
 
 
 
 
 

 

Figure 2: Point Addition                                        Figure 3: Point Doubling 
 

3.3.2. Point Doubling 
Point doubling is the addition of a point P on the elliptic curve to itself to obtain another point R on 

the same elliptic cu rve 
To double a point J to get L, i.e. to find R = 2P, consider a point P on an elliptic curve as shown in Figure 3. If 
y coordinate of the point P is not zero then the tangent line at P will intersect the elliptic curve at exactly 
one more point –R. The reflection of the point –R with respect to x-axis gives the point R, which is the result 
of doubling the point P, i.e., R = 2P. If y coordinate of the point P is zero then the tangent at this point intersects 
at a point at infinity O. Hence 2P = O when yj = 0. Figure 3 shows point doubling. 

 
3.3.3. Algebraic Formulae over Fp 

Let p be a prime in FP and a, b FP such that 4a3 + 27b2 ≠ 0 mod p in FP, then an elliptic curve E 

(FP) is defined as E (FP):= { p( x, y) , x, y  FP } Such that y2 = x3 + ax + b mod p together with a point O, 

called the point at infinity. Below is the definition of addition of 

points P and Q on the elliptic curve E (FP). Let P(x1, y1) and Q(x2, y2) then 

 

If x1 = x2 and y2 =  y1 

 

R= P+Q =         Q = Q+P  If P = O 

 

(x3, y3 )        otherwise 
 
 
Where x3    = 

2  x1  x2    If P ≠ ±Q (Point Addition) 

 

2  2x1            If P = Q (Point Doubling) 

y3   = (x1   x3)  y1, and 
 
y2  y1             If P ≠ ±Q (Point Addition) 

x2  x1 

  = 

3x1
2  a      If P = Q (Point Doubling) 

2y1 
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The point p(x, -y) is said to be the negation of p(x, y). 

 

3.3.4. Algebraic Formulae over F 
m 

Denote the (non-super singular) elliptic curve over F2
m 

by E (F2
m

). If a, b  F2
m 

such that b ≠ 0 then 

E (F2
m

) = {p(x, y), x, y  F2
m 

} 
such that  y2 + xy = x3 + ax2 + b  FP together with a point O, called the point at infinity.The addition of points on E (F2

m) is given as follows: Let P(x1, y1) and Q(x2, y2) be points on the elliptic curve E(F2
m), then 

 

O              If x1 = x2 and y2 =  y1 

R = P+Q =         Q = Q+P     If P = O (x3, y3 )      otherwise 
 

 

Where  x3    = 

2  x2 x1  a   If P ≠ ±Q (Point Addition) 

 

2    a               If P = Q (Point Doubling) 
 

y3    =  ( x1  x3 ) x3  y1      and 
 

y2  y1              If P ≠ ±Q (Point Addition) 

x2  x1 
  = 

x1   x1             If P = Q (Point Doubling) 
y1 

 

IV. Implementation 
This paper presents VTM Encryption, VTM decryption [5], ECDSA key generation, signature generation 
and signature 

verification algorithms [8] and ECDSA was implemented over Elliptic Curve (EC)     P -192 and P-256 using 

Text Message 

Encryption methods which are VTM [5], FTM[5] and TBM [6] encryption methods and compared their 

performance. 
 
Algorithm-1 

 

VTM Encryption Algorithm[5] 

 
NOTATION: TM - Text message 
 
M   - Message units VS - variable size IV - Initial Vector 

k  - Auxiliary base parameter 

XRM - XORed message 

Block – a word with followed space 
 
INPUT: sextuple T = (p, a, b, G, n, h), Digest Message 
 
OUTPUT: Encrypted Message 
 
Begin 
n = wordCount(DM) 

for i = 1 to n do 

XRM = IV  Block[i] M = ASCII(XRM) 
for j = 0 to k-1 do 

let xj = M * K + j mod p 
3 if zj = xj 

break 
end if end for 

if j < k then 
+ xj + b has a square root mod p then
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compute yj a square root of zj mod p map M to (xj, yj) 

else 
output “unsuccessful in attempt to map M to an EC point" 

end if 
Cm[i] = { kG ,Pm + kPB} IV = XRM 

end for 

End 

 
Algorithm-2 

 

VTM Decryption Algorithm[5] 
 
INPUT: sextuple T = (p, a, b, G, n, h), Encrypted Message 
 
OUTPUT: Decrypted/Plain Digest Message 
 
Begin 
for i = 1 to n do //where n is number of cipher texts 

Pm(x, y) = Pm + K(nBG) - nB(kG) // nB receivers private key 

M       = x/k 
Dm    = Text(M) // M is decimal value of base 256 format 

TM[i] = Dm  IV IV     = Dm 

TM   = TM || TM[i]  
end for 

End 

Algorithm-3 

 

ECDSA Key pair generation Algorithm[8] 

 
INPUT: Domain parameters D= (q, FR, a, b, G, n, h). 
 
OUTPUT: Public key Q, private key d. 
 
Select d [1, … , n-1] Compute Q = dG Return (Q, d) 

 

Algorithm-4 

 

ECDSA Signature Generation Algorithm[8] 

 
INPUT: Domain parameters D= (q, FR, a, b, G, n, h) , private key d, Encrypted message m'. 
 
OUTPUT: Signature (r,s) 
 
begin repeat 

k = Random[1, … , n-1]    // select random value 

r = x-coord([k]G) mod n e  = H(m') 

s = k-1(e+dr) mod n 

until r ≠ 0 and s ≠ 0 

return (r,s). 

end 

 

Algorithm-5 

 
ECDSA Signature Verification Algorithm[8] 

 
INPUT: Domain parameters D= (q, FR, a, b, G, n, h) , public key Q, Encrypted Message m', Signature (r, s). 

OUTPUT: Acceptance or rejection of the signature. 

begin 

if r, s  [1,…, n] then 
Return (“Reject the signature”) 
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end if 

e   = H(m') 

w = s-1 mod n u1   = ew mod n u2   = rw mod n 
 
x  = u1G + u2Q 

if x =  then 
Return (“Reject the signature”) 

end if 
v = x-coord( X ) mod n 
if v = r then 

Return (“Accept the signature”) 

else 
Return (“Reject the signature”) 

end if 

         end.   Elliptic Curve based Signature Generation & Signature Verification processes are described 
below and the same is represented in graphical format in figure 4 and figure 5. 

Signature Generation steps: 
1.    Digest the plain message using SHA algorithm. 

2.   Encrypt the message using EC Encryption algorithm which is VTM/FTM/TBM 
3.    Compute signature for Encrypted message using Algarithm-4 
3.    Send the digitally signed message 

Signature Verification Steps: 

1.    Verify Signature using Algarithm-5. 

2.    If verification fails then reject the signature 
3.    If verification success, then decrypt the message using respective EC Decryption Algorithm. 

 
Figure 4: Signature Generation Process                                 Figure 5: Signature Verification Process 

 

V. Results and Discussion 
In this section represents implementation results of ECDSA using VTM encryption over EC P-192 and P-256. 

 

5.1.  Results over Elliptic Curve P-192 
Message m = " hello this is a raajasekhar from kurnool so plan to go us in the next year for working 

in DW Practice LL atlanta georgia " 
Private key = 2055107281 

Public Key = (5841942716391479201550342297351085963270983519924994377602, 

5584890377300947026793868981513336619407548239394095574193) 

This message encrypted and follows Signature Generation and Verification as mentioned below. Encrypted 
message hash value H(E(m)) = -2682108996977278156968408606235438945161064554 

     ECDSA SIGNATURE as follows: Select k= 1583021364 
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Compute kG = (3792194627815960440118002914594551166312864178888962630882, 
2891190659620656059990718022662146728564853605540168001982) 

r = 62742A904369649DB4FD7CAD870EA7E7D2058DD5 
Compute s = k-1 (e + dr) mod n = 3411184681610252308390502359065554562708605093739075483483 
Signature for the message m is (r, s). 

     ECDSA VERIFICATION as follows: 
Compute w = 5777480145803669741573423688926176979417082505271032360268 
Compute u1 = 4666422527249034100042022946337090008510597277184111303696 u2 = 
4455907927429886473277204474990236853124877171335661271649 

u1G = (3929708989969467697197486716672122446942315632094831043367, 
4537003456571103380284504813721792096119198047543959491671) 
u2Q = (1277661715800205348067420766016806475954133626929696383370, 

4380808460387567649107054289732585886848088206125448742447) 
v = 62742A904369649DB4FD7CAD870EA7E7D2058DD5 

We obtain v = r, that is accept the signature. 

 

5.2.  Results over Elliptic Curve P-256 
Message m= " The Elliptic Curve Digital Signature Algorithm Validation System (ECDSAVS) 

specifies the procedures involved in validating implementations of the Elliptic Curve Digital Signature 
Algorithm(ECDSA) as approved in FIPS 186-2, Digital Signature Standard (DSS)[1] and specified in 
ANSIX9.62-1998, Public Key Cryptography for Financial Services Industry: The Elliptic CurveDigital 
Signature Algorithm (ECDSA)[2]. The ECDSAVS is designed to perform automated testing on 
Implementations Under Test (IUTs). This document provides the basic design and configuration of the 
ECDSAVS. " 
Private Key = 978425864 

Public Key = (11891048790927442902274348574213558155367351099854008212509694993459447093822, 

13669879720968471114272195759617137248100136400499358975374400163505099163986) This message 
encrypted and follows Signature Generation and Verification as mentioned below. 
Encrypted message hash value H(E(m)) = 537703090379649770402195397051062323069092491846 

     ECDSA SIGNATURE as follows: 
Select k= 115792089210356248762697446949407573529996955224135760342422259061068383502243 
Compute  

KG = (86500881224166483227925267313354237293018428812409245047778807509807358555053, 
39579053610346434470532506438011786967057506613223689314593851851982117599776) 

r = 86500881224166483227925267313354237293018428812409245047778807509807358555053 
Compute s = k-1 (e + dr) mod n 
= 104389700715501732796614779737855463749375844486540618622018054702970561091708 

Signature for the message m is (r, s). 

     ECDSA VERIFICATION as follows: 
Compute w = 106506396977556145535418054052339447393078832993181450002668470251312371474276 
Compute u1 =4382449521180328495403435242713327430416111843142728664431922692704699529209 
u2=57692616982311160984176366728847647733800539362706147029132815066162592219439 

u1G = (1014746278933925641509492137032002037288731119848 92002825714765996844262058436, 
6093742310915923099034833694998080 4564361965690646211671726514999151554795408) 
u2Q = (109322103145683055628956971282445177307378355734712278598030249871906512163766, 

42753639382524136274231334284305572212602843186842236043136827079395299552547) 
v = 86500881224166483227925267313354237293018428812409245047778807509807358555053 

We obtain v = r, that is accept the signature. 

In  the  same  way  we  have  used  TBM with plain message and encrypted  for  Signature  generation  and  
signature verification. ECDSA using Variable Size Text Message Encryption is better in performance aspect 

when compare with the other two methods and the results comparison is presented graphically in the next 

section. 

 

VI. Comparison Of ECDSA Using Various Text Based Cryptosystems 
We compare the results of ECDSA using Text Based Message with plain text(TBM) Encryption[6] 

and Text Based Message with message digest[6]. Figure 6 and Figure 7 presents total time taken for Signature 
Generation and Signature Verification when we use different text based encryption methods in ECDSA 
implementation. From Figure 6 and Figure 7, performance of ECDSA using T ex t  Ba s ed  M es sa g e  
wi t h  m es sa g e d i g es t Encryption is better when compare with ECDSA using TBM with plain text. The 
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reason is TBM based ECDSA used message digest compare with other one method. Performance of ECDSA is 
inversely proportional to key size, and security of the system depends on key size. 

 
Figure 6: Performance comparison of various ECDSA methods for over EC P-192 

 

 
Figure 7: Performance comparision of various ECDSA methods for over EC P-256 

 

VII. Conclusion 
In this paper we have implemented ECDSA for various domain parameters, after observing the 

results when the key size increases then complexity increases and performance decreased. After comparing 
TBM with plain message and message digest based ECDSA methods, ECDSA using Variable Text Message 
Encryption with message digest is better when comparing with plain text Encryption used ECDSA. The main 
reason is, the speed of scalar multiplication which plays an important role in the efficiency of whole system [7]. 
In VTM based ECDSA method, number of scalar multiplications are reduced, so this method is efficient when 
compared with FTM and TBM based methods. 
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