
ISSN (e): 2250 – 3005 || Vol, 04 || Issue, 12 || December – 2014 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 22

Implementation of Elliptic Curve Digital Signature Algorithm

Using Variable Text Based Message Encryption with Message

Digest

Rajasekhar Bandapalle Mulinti
,

Dr.G.A.Ramachandra
1,2 Research Scholar, Department of Computer Science & Technology,

1,2,Associate Professor, Sri
Krishnadevaraya University, INDIA

I. Introduction

Cryptography is the branch of cryptology dealing with the design of algorithms for encryption and
decryption, intended to ensure the secrecy and/or authenticity of message. The Digital Signature Algorithm
(DSA) was proposed in August 1991 by the U.S. National Institute of Standards and Technology (NIST).
Digital signature authentication schemes provide secure communication with minimum computational cost
for real time applications, such as electronic commerce, electronic voting, etc. The sender generates the
signature of a given message using his secret key; the receiver then verifies the signature by using sender's
public key. The ECDSA have a smaller key size, which leads to faster computation time and reduction in
processing power, storage space and bandwidth. This makes the ECDSA ideal for constrained devices such as
pagers, cellular phones and smart cards. The Elliptic-Curve Digital Signature Algorithm (ECDSA) is a Digital
Signature Scheme based on ECC. ECDSA was first proposed in 1992 by Scott Vanstone in response of NIST
(Nation Institute of Standards and Technology) request for public comments on their proposal for Digital
Signature Schemes[1].
Digital Signature authenticated schemes, have the following properties.

1. Confidentiality. Secret information shared between sender and receiver; any outsider cannot read the

information.

2. Authentication. The sender imprints his identity by means of the digital signature, which only the

designated receiver can unravel and verify. An anonymous adversary cannot send a malicious message

impersonating the genuine sender, because he does not have the necessary tools to generate the signature.
3. Non-repudiation. The signature firmly establishes the identity of the sender. The sender cannot deny

having sent the message and the signature.
In this paper we discuss ECC in detail and ECDSA Implementation with different Text Message encryption

methods and compared the results.

ABSTRACT:
Digital Signatures are considered as digital counterparts to handwritten signatures, and they are the
basis for validating the
authenticity of a connection. It is well known that with the help of digital signature, forgery of digital
information can be identified and it is widely used in e-commerce and banking applications. Elliptic

curve digital signatures (ECDSA) are stronger and ideal for constrained environments like smart cards

due to smaller bit size, thereby reducing processing overhead. We have implemented ECDSA over

Elliptic Curve (EC) P-192 and P-256 using various Text Message encryptions which are Variable

Size Text Message(VTM), Fixed Size Text Message(FTM) and Text Based Message(TBM) encryption

methods and compared their performance. In the existing Variable Text Based Message used the plain

message for generating digital signature but in the new approach, we have converted plain message to

digested message using SHA algorithm and then created digital signature which is more faster than

existing approach.

Keywords: Digital Signature, Elliptic Curve Digital Signature Algorithm, Elliptic Curve Cryptography,

ECDLP.

Implementation of Elliptic Curve Digital Signature Algorithm Using Variable Text Based Message

www.ijceronline.com Open Access Journal Page 23

II. Elliptic Curve Discrete Logarithm Problem
An elliptic curve E, [2] defined over a field K of characteristic ≠ 2 or 3 is the set of solutions (x, y)  K'

to the equation y2 = x3 + ax + b (1)

a, b  K (where the cubic on the right has no multiple roots). Two nonnegative integers, a and b, less than p that
satisfy:

4a3 + 27b2 (mod p) = 0 (2)
Then Ep (a, b) denotes the elliptic group mod p whose elements (x, y) are pairs of nonnegative integers less than
p satisfying:

y2 = x3 + ax + b (mod p) (3)
together with the point at infinity O.

The elliptic curve discrete logarithm problem(ECDLP) can be stated as follows. Fix a prime p and an elliptic

curve.

Q = xP (4)

where xP represents the point P on elliptic curve added to itself x times. Then the elliptic curve discrete
logarithm problem is to determine x given P and Q. It is relatively easy to calculate Q given x and P, but it is

very hard to determine x given Q and P.

ECC is based on ECDLP. ECDH and ECDSA are cryptographic schemes based on ECC. The best known

algorithm for solving ECDLP is Pollard-Rho algorithm which is fully exponential having a running time of

√(Π*n /2).

III. Elliptic Curve Cryptography
The Elliptic curve cryptosystems (ECC) were invented by Neal Koblitz [2] and Victor Miller[3] in

1985. They can be viewed as elliptic curve analogues of the older discrete logarithm (DL) cryptosystems in

which the subgroup of Zp
* is replaced by the group of points on an elliptic curve over a finite field. The

mathematical basis for the security of elliptic curve cryptosystems is the computational intractability of the
elliptic curve discrete logarithm problem (ECDLP) [4].
ECC is a relative of discrete logarithm cryptography. An elliptic curve E over Zp as in Figure 1 is defined in

the
Cartesian coordinate system by an equation of the form:

y2 = x3 + ax + b (5)

where a, b  Zp, and 4a3 + 27b2 (mod p) ≠ 0 (mod p), together with a special point O, called the point at

infinity. The set

E(Zp) consists of all points (x, y), x  Zp, y  Zp, which satisfy the defining equation, together with O.
Each value of a and b gives a different elliptic curve. The public key is a point on the curve and the private key
is a random
number. The public key is obtained by multiplying the private key with a generator point G in the curve.

The definition of groups and finite fields, which are fundamental for the construction of elliptic curve

cryptosystem are discussed in next subsections.

3.1. Groups

Figure 1. An Elliptic Curve

Implementation of Elliptic Curve Digital Signature Algorithm Using Variable Text Based Message

www.ijceronline.com Open Access Journal Page 24

A group with an operation * is defined on pairs of elements of G. The operations satisfy the following properties:

 Closure: a * b G for all a, b G

 Associativity: a * (b * c) = (a * b) * c for all a, b, c G

 Existence of Identity: There exists an element e G, called the identity, such that e * a = a * e = a for all a

G.

 Existence of Inverse: For each a G there is an element bG such that a * b = b * a = e. The element b
is called the inverse of a.

Moreover, a group G is said to be abelian if a * b = b * a for all a, b G. The order of a group G is the number
of elements in G.

3.2. Finite Field
A finite field consists of a finite set of elements together with two binary operations called

addition and multiplication, which satisfy certain arithmetic properties. The order of a finite field is the
number of elements in the field. There exists a finite field of order q if and only if q is a prime power. If q is a
prime power, then there is essentially only one finite field of order q; this field is denoted by Fq. There are,
however, many ways of representing the elements of Fq. Some representations
may lead to more efficient implementations of the field arithmetic in hardware or in software. If q = pm where
p is a prime and m is a positive integer, then p is called the characteristic of Fq and m is called the extension
degree of Fq.

3.2.1. Prime Field Fp

Let p be a prime number. The finite field Fp called a prime field, is comprised of the set of integers
{0,1,2,….,p-1} with the
following arithmetic operations:

 Addition: If a, bFp then a + b = r, where r is the remainder when a + b is divided by p and 0 ≤ r ≤
p-1 known as addition modulo p.

 Multiplication: If a, b Fp then a.b = s, where s is the remainder when a.b is divided by p and 0 ≤ s ≤
p-1 known as multiplication modulo p.

 Inversion: If a is non-zero element in Fp, the inverse of modulo a modulo p, denoted by a-1, is the unique

integer cFp for which a.c = 1.

3.2.2. Binary Field F2
m

The field F2
m, called a characteristic two finite field or a binary finite field, can be viewed as a vector

space of dimension m over the field F2 which consists of the two elements 0 and1. That is, there exist m

elements α0, α1,…, αm-1 in F2
m such that each element α can be uniquely written in the form:

α= a0 α0 + a1 α1+……….+am-1 αm-1, where ai{0,1}

Such a set {α0, α1,…, αm-1} is called a basis of F2

m over F2. Given such a basis, a field element α can be
represented as the bit string (a0 + a1 ……….+am-1) Addition of field elements is performed by bitwise
XOR-ing the vector representations. The multiplication rule depends on the basis selected. ANSI X9.62
permits two kinds of bases: polynomial bases and normal bases.

3.2.3. Domain Parameters
The domain parameters for ECDSA consist of a suitably chosen elliptic curve E defined over

a finite field Fq of characteristic p, and a base point G E(Fq). Domain parameters may either be shared by

a group of entities, or specific to a single user. To summarize, domain parameters are comprised of:
1. A field size q, where either q = p, an odd prime, or q = 2m

2. An indication FR (field representation) of the representation used for the elements of Fq

3. (optional) a bit string seed E of length at least 160 bits

4. Two field elements a and b in Fq which define the equation of the elliptic curve E over Fq' (i.e., y2 =

x3 + ax + b in the case p > 3, and y2 + xy = x3 + ax + b in the case p = 2)

5. Two field elements xG and yG in Fq which define a finite point G = (xG, yG) of prime order in E(Fq)

6. The order of the point G, with n>2160 and n > 4√q and

7. The cofactor h = #E(Fq)/n

Implementation of Elliptic Curve Digital Signature Algorithm Using Variable Text Based Message

www.ijceronline.com Open Access Journal Page 25

3.3. Elliptic Curve Operations over Finite Fields[8]
The main operation is Point multiplication is achieved by two basic elliptic curve operations.
i. Point addition, adding two points P and Q to obtain another point R i.e. R= P + Q. ii. Point doubling,

adding a point P to itself to obtain another point R i.e. R = 2P.

3.3.1. Point Addition
Point addition is the addition of two points P and Q on an elliptic curve to obtain another point R on

the same elliptic curve.
Consider two points P and Q on an elliptic curve as shown in Figure 2. If P ≠ -Q then a line drawn through the

points P and Q will intersect the elliptic curve at exactly one more point –R. The reflection of the point –R

with respect to x-axis gives the point R, which is the result of addition of points P and Q. Thus on an elliptic

curve R = P + Q. If Q = -P the line through this point intersect at a point at infinity O. Hence P + (-P) = O. A
negative of a point is the reflection of that point with respect to x-axis.

Figure 2: Point Addition Figure 3: Point Doubling

3.3.2. Point Doubling
Point doubling is the addition of a point P on the elliptic curve to itself to obtain another point R on

the same elliptic cu rve
To double a point J to get L, i.e. to find R = 2P, consider a point P on an elliptic curve as shown in Figure 3. If
y coordinate of the point P is not zero then the tangent line at P will intersect the elliptic curve at exactly
one more point –R. The reflection of the point –R with respect to x-axis gives the point R, which is the result
of doubling the point P, i.e., R = 2P. If y coordinate of the point P is zero then the tangent at this point intersects
at a point at infinity O. Hence 2P = O when yj = 0. Figure 3 shows point doubling.

3.3.3. Algebraic Formulae over Fp

Let p be a prime in FP and a, b FP such that 4a3 + 27b2 ≠ 0 mod p in FP, then an elliptic curve E

(FP) is defined as E (FP):= { p(x, y) , x, y  FP } Such that y2 = x3 + ax + b mod p together with a point O,

called the point at infinity. Below is the definition of addition of

points P and Q on the elliptic curve E (FP). Let P(x1, y1) and Q(x2, y2) then

If x1 = x2 and y2 =  y1

R= P+Q = Q = Q+P If P = O

(x3, y3) otherwise

Where x3 =

2  x1  x2 If P ≠ ±Q (Point Addition)

2  2x1 If P = Q (Point Doubling)

y3 = (x1  x3)  y1, and

y2  y1 If P ≠ ±Q (Point Addition)

x2  x1

 =

3x1
2  a If P = Q (Point Doubling)

2y1

Implementation of Elliptic Curve Digital Signature Algorithm Using Variable Text Based Message

www.ijceronline.com Open Access Journal Page 26

2

The point p(x, -y) is said to be the negation of p(x, y).

3.3.4. Algebraic Formulae over F
m

Denote the (non-super singular) elliptic curve over F2
m

by E (F2
m

). If a, b  F2
m

such that b ≠ 0 then

E (F2
m

) = {p(x, y), x, y  F2
m

}
such that y2 + xy = x3 + ax2 + b  FP together with a point O, called the point at infinity.The addition of points on E (F2

m) is given as follows: Let P(x1, y1) and Q(x2, y2) be points on the elliptic curve E(F2
m), then

O If x1 = x2 and y2 =  y1

R = P+Q = Q = Q+P If P = O (x3, y3) otherwise

Where x3 =

2  x2 x1  a If P ≠ ±Q (Point Addition)

2    a If P = Q (Point Doubling)

y3 =  (x1  x3) x3  y1 and

y2  y1 If P ≠ ±Q (Point Addition)

x2  x1
 =

x1 x1 If P = Q (Point Doubling)
y1

IV. Implementation
This paper presents VTM Encryption, VTM decryption [5], ECDSA key generation, signature generation
and signature

verification algorithms [8] and ECDSA was implemented over Elliptic Curve (EC) P -192 and P-256 using

Text Message

Encryption methods which are VTM [5], FTM[5] and TBM [6] encryption methods and compared their

performance.

Algorithm-1

VTM Encryption Algorithm[5]

NOTATION: TM - Text message

M - Message units VS - variable size IV - Initial Vector

k - Auxiliary base parameter

XRM - XORed message

Block – a word with followed space

INPUT: sextuple T = (p, a, b, G, n, h), Digest Message

OUTPUT: Encrypted Message

Begin
n = wordCount(DM)

for i = 1 to n do

XRM = IV  Block[i] M = ASCII(XRM)
for j = 0 to k-1 do

let xj = M * K + j mod p
3 if zj = xj

break
end if end for

if j < k then
+ xj + b has a square root mod p then

Implementation of Elliptic Curve Digital Signature Algorithm Using Variable Text Based Message

www.ijceronline.com Open Access Journal Page 27

compute yj a square root of zj mod p map M to (xj, yj)

else
output “unsuccessful in attempt to map M to an EC point"

end if
Cm[i] = { kG ,Pm + kPB} IV = XRM

end for

End

Algorithm-2

VTM Decryption Algorithm[5]

INPUT: sextuple T = (p, a, b, G, n, h), Encrypted Message

OUTPUT: Decrypted/Plain Digest Message

Begin
for i = 1 to n do //where n is number of cipher texts

Pm(x, y) = Pm + K(nBG) - nB(kG) // nB receivers private key

M = x/k
Dm = Text(M) // M is decimal value of base 256 format

TM[i] = Dm  IV IV = Dm

TM = TM || TM[i]
end for

End

Algorithm-3

ECDSA Key pair generation Algorithm[8]

INPUT: Domain parameters D= (q, FR, a, b, G, n, h).

OUTPUT: Public key Q, private key d.

Select d [1, … , n-1] Compute Q = dG Return (Q, d)

Algorithm-4

ECDSA Signature Generation Algorithm[8]

INPUT: Domain parameters D= (q, FR, a, b, G, n, h) , private key d, Encrypted message m'.

OUTPUT: Signature (r,s)

begin repeat

k = Random[1, … , n-1] // select random value

r = x-coord([k]G) mod n e = H(m')

s = k-1(e+dr) mod n

until r ≠ 0 and s ≠ 0

return (r,s).

end

Algorithm-5

ECDSA Signature Verification Algorithm[8]

INPUT: Domain parameters D= (q, FR, a, b, G, n, h) , public key Q, Encrypted Message m', Signature (r, s).

OUTPUT: Acceptance or rejection of the signature.

begin

if r, s  [1,…, n] then
Return (“Reject the signature”)

Implementation of Elliptic Curve Digital Signature Algorithm Using Variable Text Based Message

www.ijceronline.com Open Access Journal Page 28

end if

e = H(m')

w = s-1 mod n u1 = ew mod n u2 = rw mod n

x = u1G + u2Q

if x =  then
Return (“Reject the signature”)

end if
v = x-coord(X) mod n
if v = r then

Return (“Accept the signature”)

else
Return (“Reject the signature”)

end if

 end. Elliptic Curve based Signature Generation & Signature Verification processes are described
below and the same is represented in graphical format in figure 4 and figure 5.

Signature Generation steps:
1. Digest the plain message using SHA algorithm.

2. Encrypt the message using EC Encryption algorithm which is VTM/FTM/TBM
3. Compute signature for Encrypted message using Algarithm-4
3. Send the digitally signed message

Signature Verification Steps:

1. Verify Signature using Algarithm-5.

2. If verification fails then reject the signature
3. If verification success, then decrypt the message using respective EC Decryption Algorithm.

Figure 4: Signature Generation Process Figure 5: Signature Verification Process

V. Results and Discussion
In this section represents implementation results of ECDSA using VTM encryption over EC P-192 and P-256.

5.1. Results over Elliptic Curve P-192
Message m = " hello this is a raajasekhar from kurnool so plan to go us in the next year for working

in DW Practice LL atlanta georgia "
Private key = 2055107281

Public Key = (5841942716391479201550342297351085963270983519924994377602,

5584890377300947026793868981513336619407548239394095574193)

This message encrypted and follows Signature Generation and Verification as mentioned below. Encrypted
message hash value H(E(m)) = -2682108996977278156968408606235438945161064554

 ECDSA SIGNATURE as follows: Select k= 1583021364

Implementation of Elliptic Curve Digital Signature Algorithm Using Variable Text Based Message

www.ijceronline.com Open Access Journal Page 29

Compute kG = (3792194627815960440118002914594551166312864178888962630882,
2891190659620656059990718022662146728564853605540168001982)

r = 62742A904369649DB4FD7CAD870EA7E7D2058DD5
Compute s = k-1 (e + dr) mod n = 3411184681610252308390502359065554562708605093739075483483
Signature for the message m is (r, s).

 ECDSA VERIFICATION as follows:
Compute w = 5777480145803669741573423688926176979417082505271032360268
Compute u1 = 4666422527249034100042022946337090008510597277184111303696 u2 =
4455907927429886473277204474990236853124877171335661271649

u1G = (3929708989969467697197486716672122446942315632094831043367,
4537003456571103380284504813721792096119198047543959491671)
u2Q = (1277661715800205348067420766016806475954133626929696383370,

4380808460387567649107054289732585886848088206125448742447)
v = 62742A904369649DB4FD7CAD870EA7E7D2058DD5

We obtain v = r, that is accept the signature.

5.2. Results over Elliptic Curve P-256
Message m= " The Elliptic Curve Digital Signature Algorithm Validation System (ECDSAVS)

specifies the procedures involved in validating implementations of the Elliptic Curve Digital Signature
Algorithm(ECDSA) as approved in FIPS 186-2, Digital Signature Standard (DSS)[1] and specified in
ANSIX9.62-1998, Public Key Cryptography for Financial Services Industry: The Elliptic CurveDigital
Signature Algorithm (ECDSA)[2]. The ECDSAVS is designed to perform automated testing on
Implementations Under Test (IUTs). This document provides the basic design and configuration of the
ECDSAVS. "
Private Key = 978425864

Public Key = (11891048790927442902274348574213558155367351099854008212509694993459447093822,

13669879720968471114272195759617137248100136400499358975374400163505099163986) This message
encrypted and follows Signature Generation and Verification as mentioned below.
Encrypted message hash value H(E(m)) = 537703090379649770402195397051062323069092491846

 ECDSA SIGNATURE as follows:
Select k= 115792089210356248762697446949407573529996955224135760342422259061068383502243
Compute

KG = (86500881224166483227925267313354237293018428812409245047778807509807358555053,
39579053610346434470532506438011786967057506613223689314593851851982117599776)

r = 86500881224166483227925267313354237293018428812409245047778807509807358555053
Compute s = k-1 (e + dr) mod n
= 104389700715501732796614779737855463749375844486540618622018054702970561091708

Signature for the message m is (r, s).

 ECDSA VERIFICATION as follows:
Compute w = 106506396977556145535418054052339447393078832993181450002668470251312371474276
Compute u1 =4382449521180328495403435242713327430416111843142728664431922692704699529209
u2=57692616982311160984176366728847647733800539362706147029132815066162592219439

u1G = (1014746278933925641509492137032002037288731119848 92002825714765996844262058436,
6093742310915923099034833694998080 4564361965690646211671726514999151554795408)
u2Q = (109322103145683055628956971282445177307378355734712278598030249871906512163766,

42753639382524136274231334284305572212602843186842236043136827079395299552547)
v = 86500881224166483227925267313354237293018428812409245047778807509807358555053

We obtain v = r, that is accept the signature.

In the same way we have used TBM with plain message and encrypted for Signature generation and
signature verification. ECDSA using Variable Size Text Message Encryption is better in performance aspect

when compare with the other two methods and the results comparison is presented graphically in the next

section.

VI. Comparison Of ECDSA Using Various Text Based Cryptosystems
We compare the results of ECDSA using Text Based Message with plain text(TBM) Encryption[6]

and Text Based Message with message digest[6]. Figure 6 and Figure 7 presents total time taken for Signature
Generation and Signature Verification when we use different text based encryption methods in ECDSA
implementation. From Figure 6 and Figure 7, performance of ECDSA using T ex t Ba s ed M es sa g e
wi t h m es sa g e d i g es t Encryption is better when compare with ECDSA using TBM with plain text. The

Implementation of Elliptic Curve Digital Signature Algorithm Using Variable Text Based Message

www.ijceronline.com Open Access Journal Page 30

reason is TBM based ECDSA used message digest compare with other one method. Performance of ECDSA is
inversely proportional to key size, and security of the system depends on key size.

Figure 6: Performance comparison of various ECDSA methods for over EC P-192

Figure 7: Performance comparision of various ECDSA methods for over EC P-256

VII. Conclusion
In this paper we have implemented ECDSA for various domain parameters, after observing the

results when the key size increases then complexity increases and performance decreased. After comparing
TBM with plain message and message digest based ECDSA methods, ECDSA using Variable Text Message
Encryption with message digest is better when comparing with plain text Encryption used ECDSA. The main
reason is, the speed of scalar multiplication which plays an important role in the efficiency of whole system [7].
In VTM based ECDSA method, number of scalar multiplications are reduced, so this method is efficient when
compared with FTM and TBM based methods.

References
[1] Navneet Randhawa, Lolita Singh, A Systematic Way to Provide Security for Digital Signature Using Elliptic Curve

Cryptography, IJCST Vol.2, Issue 3, Sep-2011, 185-188

[2] Koblitz, N., 1987. Elliptic curve cryptosystems. Mathematics of Computation 48, 203-209. [3] Miller, V., 1985. Use of elliptic

curves in cryptography. CRYPTO 85.

[4] Certicom ECC Challenge. 2009. Certicom Research

[5] Jayabhaskar Muthukuru, Bachala Sathyanarayana, Fixed and Variable Size Text Based Message Mapping Techniques

Using ECC, GJCST Vol.12, Issue 3, Feb-2012, 25-30.

[6] S. Maria Celestin Vigila , K. Muneeswaran “Implementation of Text based Cryptosystem using Elliptic Curve

Cryptography”, IEEE Sep-2009, pp. 82-85.

[7] Harsandeep Brar , Rajpreet Kaur, “Design and Implementation of Block Method for Computing NAF” IJCA, Volume 20– No.1,

April 2011, pp. 37-41.

[8] Hankerson, D., Menezes, A., Vanstone, S., Guide to Elliptic Curve Cryptography (Springer, 2004).

