

On (1,2)*-πgθ-CLOSED SETS IN BITOPOLOGICAL SPACES

C.Janaki¹, M. Anandhi²

^{1,2}Asst. Professor, Dept. of Mathematics, L.R.G Government Arts College For Women, Tirupur-4, India.

Abstract

In this paper we introduce a new class of sets called $(1,2)^*-\pi g\theta$ -closed sets in bitopological spaces. Also we find some basic properties of $(1,2)^*-\pi g\theta$ -closed sets. Further, we introduce a new space called $(1,2)^*-\pi g\theta$ - $T_{1/2}$ space. Mathematics Subject Classification: 54E55, 54C55

KEY WORDS: $(1,2)^*-\pi g\theta$ -closed set, $(1,2)^*-\pi g\theta$ -open set, $(1,2)^*-\pi g\theta$ -continuity and $(1,2)^*-\pi g\theta$ - $T_{\frac{1}{2}}$ space.

I. INTRODUCTION

Velicko[24] introduced the notions of θ -open subsets, θ -closed subsets and θ -closure, for the sake of studying the important class of H-closed spaces in terms of arbitrary filterbases. Dontchev and Maki [7] alone have explored the concept of θ -generalized closed sets. Regular open sets have been introduced and investigated by Stone [23]. Levine [4,14] introduced generalized closed sets and studied their properties. Bhattacharya and Lahiri [5], Arya and Nour [4], Maki et al.[15],[16] introduced semi-generalized closed sets, generalized semi-closed sets and α -generalized closed sets and generalized α -closed sets respectively. O.Ravi et al [21] have introduced the concepts of (1,2)*-semi-open sets, (1,2)*- α -open sets, (1,2)*-semi-generalized-closed sets and (1,2)*- α -generalized closed sets in bitopological spaces. This paper is an attempt to highlight a new type of generalized closed sets called (1,2)*- π g θ -continuous functions and (1,2)*- π g θ -irresolute functions. These findings result in procuring several characterizations of (1,2)*- π g θ -closed sets and as well as their application which leads to an introduction of a new space called (1,2)*- π g θ -T₁₂ space.

II. PRELIMINARIES

Throughout this paper (X,τ_1,τ_2) and (Y,σ_1,σ_2) represent bitopological spaces on which no separation axioms are assumed unless otherwise mentioned.

Definition 2.1 ([20]). A subset S of a bitopological space (X,τ_1,τ_2) is said to be $\tau_{1,2}$ -open if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$. A subset S of X is $\tau_{1,2}$ - closed if the complement of S is $\tau_{1,2}$ -open.

Definition 2.2 ([20]). Let S be a subset of X. Then

- $\begin{array}{ll} (i) & \mbox{ The } \tau_1\tau_2\mbox{-interior of }S\ , \mbox{ denoted by } \tau_1\tau_2\mbox{-int }(S)\ is\ defined\ by & \\ & \mbox{ and }G\ is\ \tau_{1,2}\ .\ open\ \}\ . \end{array} \right. \label{eq:GG_states} U \ \left\{G/G\subset\ S\ denoted\ by\ denote\ by\ denoted\ by\ denote\ by\ denoted\ by\ denoted\ by\ denoted\ by\ denote\ by\ denoted\ by\ denoted\ by\ denote\ by\ denoted\ by\ denote\ by\ denoted\ by\ denote\ by\ denot\ by\ denote\ by\$
- (ii) The $\tau_1\tau_2$ -closure of S denoted by $\tau_1\tau_2$ -cl(S) is defined by $\cap \{ F \mid S \subset F \text{ and } F \text{ is } \tau_{1,2} \text{ -closed} \}.$

Definition 2.3. A subset A of a bitopological space (X, τ_1, τ_2) is called

1. $(1,2)^*$ - semi-open[20] if $A \subset \tau_1 \tau_2$ -cl $(\tau_1 \tau_2$ -int(A)).

2. (1,2)*- preopen [20] if $A \subset \tau_1 \tau_2$ int $(\tau_1 \tau_2 cl(A))$.

 $\text{$\alpha$-open [20] if $A \subset \tau_1 \tau_2$- int (\tau_1 \tau_2$-cl (\tau_1 \tau_2$- int(A))).$}$

4. (1,2)*-generalised closed (briefly (1,2)*-g-closed) [20] if $\tau_1\tau_2$ -cl (A) \subset U whenever A \subset U and U is $\tau_{1,2}$ -open in X.

5. (1,2)*-regular open[20] if $A = \tau_1 \tau_2$ int ($\tau_1 \tau_2$.cl(A)).

6. $(1,2)^*$ - semi-generalised-closed (briefly $(1,2)^*$ -sg-closed) [20] if $(1,2)^*$ -scl(A)

- \subset U whenever A \subset U and U is (1,2)*-semi-open in X.
- 7. (1,2)*-generalized semi-closed (briefly (1,2)*-gs-closed)[20] if (1,2)*-scl(A) \subset U, whenever A \subset U and U is $\tau_{1,2}$ -open in X.

3. (1,2)*-

- 8. (1,2)*- α -generalized-closed (briefly (1,2)*- α g-closed) [20] if (1,2)*- α cl(A) \subset U, whenever A \subset U and U is $\tau_{1,2}$ -open in X.
- 9. $(1,2)^*$ -generalized α -closed (briefly $(1,2)^*$ -g α -closed)[20] if $(1,2)^*$ α cl(A) \subset U, whenever A \subset U and U is $(1,2)^*$ - α -open in X.
- 10. a $(1,2)^*-\theta$ -generalized closed (briefly, $(1,2)^*-\theta$ -closed) set [11] if $(1,2)^*-cl_{\theta}(A) \subset U$ whenever $A \subset U$ and U is $\tau_{1,2}$ open in (X,τ_1,τ_2) .
- 11. $(1,2)^*$ - π generalized closed(briefly $(1,2)^*$ - π g-closed [8] if $(1,2)^*$ -cl(A) \subset U, whenever A \subset U and U is $\tau_{1,2}$. π -open.
- 12. $(1,2)^*$ - π generalized α -closed (briefly $(1,2)^*$ - π g α -closed)[3] if $(1,2)^*$ - α cl(A) \subset U, whenever A \subset U and U is $\tau_{1,2}$ - π -open.
- 13. $(1,2)^*$ - π generalized semi-closed (briefly $(1,2)^*$ - π gs-closed)[4] if $(1,2)^*$ -scl(A) \subset U, whenever A \subset U and U is $\tau_{1,2}$. π -open.
- 14. $(1,2)^*$ - π generalized b-closed (briefly $(1,2)^*$ - π gb-closed)[22] if $(1,2)^*$ -bcl(A) \subset U, whenever A \subset U and U is $\tau_{1,2}$ - π -open.
- 15. (1,2)*- π generalized pre-closed(briefly (1,2)*- π gp-closed)[19] if (1,2)*-pcl(A) \subset U, whenever A \subset U and U is $\tau_{1,2}$ - π -open.

The complement of a $(1,2)^*$ -semi-closed (resp. $(1,2)^*-\alpha$ -closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -sg-closed, $(1,2)^*$ -gg-closed, $(1,2)^*-\alpha$ g-closed, $(1,2)^*-\alpha$ -open, $(1,2)^*-\alpha$ -

Definition 2.4 The finite union of $(1,2)^*$ -regular open sets[5] is said to be $\tau_{1,2}$ - π -open. The complement of $\tau_{1,2}$ - π -open is said to be $\tau_{1,2}$ - π -closed.

Definition2. 5: A function f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called

- (i) $\tau_{1,2}$ - π -open map[3] if f(F) is $\tau_1\tau_2$ - π -open map in Y for every $\tau_{1,2}$ -openset F in X. (ii) (1.2)* 0 continuent[7] if $f^{-1}(V)$ is (1.2)* 0 closed in (X = τ_1) for every (1.2)* closed
- (ii) $(1,2)^*-\theta$ -continuous[7] if $f^1(V)$ is $(1,2)^*-\theta$ -closed in (X,τ_1,τ_2) for every $(1,2)^*$ -closed set V in (Y,σ_1,σ_2) .
- (iii) $(1,2)^*-\theta$ -irresolute[7] if $f^1(V)$ is $(1,2)^*-\theta$ -closed in (X,τ_1,τ_2) for every $(1,2)^*-\theta$ -closed set V in (Y,σ_1,σ_2) .

III. $(1,2)^*-\pi g\theta$ -closed set

We introduce the following definition.

Definition 3.1. A subset A of (X,τ_1,τ_2) is called $(1,2)^*-\pi$ generalized θ -closed set (briefly $(1,2)^*-\pi g\theta$ -closed) if $\tau_1\tau_2$ -cl_{θ}(A) \subset U whenever A \subset U and U is $\tau_1\tau_2$ - π -open.

The complement of $(1,2)^*$ - $\pi g\theta$ -closed is $(1,2)^*$ - $\pi g\theta$ -open..

Theorem 3.2:

1. Every $(1,2)^*-\theta$ - closed set is $(1,2)^*-\pi g\theta$ -closed.

- **2.** Every $(1,2)^*-\theta$ g-closed set is $(1,2)^*-\pi g\theta$ -closed.
- **3.** Every $(1,2)^*$ - $\pi g\theta$ -closed set is $(1,2)^*$ - πg -closed.
- **4.** Every $(1,2)^*$ - $\pi g\theta$ -closed set is $(1,2)^*$ - $\pi g\alpha$ -closed.
- **5.** Every $(1,2)^*$ - $\pi g\theta$ -closed set is $(1,2)^*$ - πgs -closed.
- **6.** Every $(1,2)^*$ - $\pi g\theta$ -closed set is $(1,2)^*$ - πgb -closed.
- 7. Every $(1,2)^*$ - $\pi g\theta$ -closed set is $(1,2)^*$ - πgp -closed

Proof: Straight forward.

Converse of the above need not be true as seen in the following examples.

Example 3.3 Let $X = \{a,b,c\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a,c\}\}; \tau_2 = \{\phi, X, \{b,c\}\}$: Let $A = \{b\}$. Then A is $\pi g \theta$ -closed but not θ -closed.

Example 3.4 Let $X = \{a, b, c, d\}$. $\tau_1 = \{\phi, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, X\}$; $\tau_2 = \{\phi, \{b, d\}, \{b, c, d\}, X\}$. Let $A = \{a, d\}$. Then A is $(1, 2)^* - \pi g \theta$ -closed but not $(1, 2)^* - \theta g$ -closed.

Page 7

Example 3.5 Let $X = \{a,b,c,d\}, \tau_1 = \{\phi,\{a\},\{b\},\{a,b\},\{a,b,d\},X\}, \tau_{2=}\{\phi,\{a,c\},\{a,b,c\},X\}$. Let $A = \{c\}$. Then A is $(1,2)^*$ - π g-closed but not $(1,2)^*$ - π g θ -closed.

Example 3.6 Let $X = \{a,b,c,d\}$. $\tau_{1=} \{\phi, \{a\}, \{d\}, \{a,d\}, X\}; \tau_2 = \{\phi, \{c,d\}, \{a,c,d\}, X\}$: Let $A = \{c\}$. Then A is $(1,2)^*$ - $\pi g \alpha$ -closed set but not $(1,2)^*$ - $\pi g \theta$ -closed.

Example3.7 Let $X = \{a,b,c,d\}$. $\tau_1 = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}; \tau_2 = \{\phi, \{a,b\}, \{a,b,d\}, X,\};$ Let $A = \{a\}$. Then A is $(1,2)^*$ - π gs-closed set but not $(1,2)^*$ - π g θ -closed.

Example 3.8 Let $X = \{a,b,c,d\}$. $\tau_1 = \{\phi, \{a\}, \{d\}, \{a,d\}, X\}$; $\tau_2 = \{\phi, \{c,d\}, \{a,c,d\}, X\}$; Let $A = \{a,c\}$. Then A is $(1,2)^*$ - π gb-closed set but not $(1,2)^*$ - π gb-closed.

Example 3.9 Let $X = \{a,b,c,d\}$. $\tau_1 = \{\phi,\{a\},\{d\},\{a,d\}, X\}$; $\tau_2 = \{\phi,\{c,d\},\{a,c,d\}, X\}$: Let $A = \{c\}$. Then A is $(1,2)^*$ - π gp-closed but not $(1,2)^*$ - π g θ -closed.

Remark 3.10 The above discussions are summarized in the following diagram.

Remark 3.11 (1,2)*- $\pi g\theta$ -closed is independent of (1,2)*-closedness, (1,2)*- α -closedness, (1,2)*-semiclosedness, (1,2)*-gc-closedness, (1,2)*-gc-closedness, (1,2)*- α -closedness and (1,2)*- $g\alpha$ closedness, as seen in the following examples.

Example 3.12 Let $X = \{a,b,c,d\}, \tau_1 = \{\phi,\{a\},\{b\},\{a,b\}, X\}; \tau_2 = \{\phi,\{a,b,d\}, X\}$: Let $A = \{d\}$. Then A is $(1,2)^*$ - $\pi g \theta$ -closed but not $(1,2)^*$ -g-closed.

Example 3.13 Let $X = \{a, b, c, d, e\}, \tau_1 = \{\phi, \{a, b\}, \{a, b, c, d\}, X\}; \tau_{2=} \{\phi, \{c, d\}, X\}:$ Let $A = \{e\}$. Then A is $(1, 2)^*$ -g-closed but not $(1, 2)^*$ - $\pi g\theta$ -closed.

Example3.14. Let $X = \{a,b,c,\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}; \tau_2 = \{\phi, \{b,c\}, X\}$: Let $A = \{b\}$. Then A is $(1,2)^*$ - $\pi g \theta$ -closed but not $(1,2)^*$ -closed, $(1,2)^*$ - α -closed, $(1,2)^*$ -semi-closed.

Example 3.15 Let $X = \{a,b,c\}, \tau_1 = \{\phi,\{a\},\{b\},\{a,b\},X\}; \tau_2 = \{\phi,\{b,c\},X\}$: Let $A = \{a\}$. Then A is $(1,2)^*$ -closed, $(1,2)^*$ - α -closed, $(1,2)^*$ -semi-closed but not $(1,2)^*$ - $\pi g\theta$ -closed.

Example 3.16 Let $X = \{a,b,c,d\}, \tau_1 = \{\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}, X\}; \tau_2 = \{\phi,\{a,b,d\}, X\}:$ (i) Let $A=\{a,b,c\}$. Then A is $(1,2)^*-\pi g\theta$ -closed but neither $(1,2)^*$ -sg-closed nor $(1,2)^*$ -gs-closed. (ii) Let $A = \{a\}$. Then A is both $(1,2)^*$ -sg-closed and $(1,2)^*$ -gs-closed but not $(1,2)^*-\pi g\theta$ -closed.

Example 3.17 Let $X = \{a,b,c,d\}, \tau_1 = \{\phi, \{c,d\}, \{a,c,d\}, X\}, \tau_{2=}\{\phi, \{a\}, \{d\}, \{a,d\}, \{c,d\}, X\}.$ (i) Let $A = \{b,d\}$. Then A is $(1,2)^*$ - $\pi g \theta$ -closed but neither $(1,2)^*$ - αg -closed nor $(1,2)^*$ - $g \alpha$ - closed. (ii)Let $A = \{c\}$. Then A is $(1,2)^*$ - αg -closed, $(1,2)^*$ - $g \alpha$ -closed but not $(1,2)^*$ - $\pi g \theta$ -closed.

Remark 3.18 The above discussions are summarized in the following diagram.

Remark 3.19 A finite union of $(1,2)^*$ - $\pi g\theta$ -closed sets is always a $(1,2)^*$ - $\pi g\theta$ -closed.

Proof: Let A, B \in (1,2)*- π G θ C(X). Let U be any $\tau_1\tau_2$ - π -open set such that $(A \cup B) \subseteq U$. Since (1,2)*- $cl_{\theta}(A \cup B) = (1,2)$ *- $cl_{\theta}(A) \cup (1,2)$ *- $cl_{\theta}(B) \subseteq U \cup U$ =U. This implies (1,2)*- $cl_{\theta}(A \cup B) \subseteq U$. Hence $A \cup B$ is also a (1,2)*- π g θ -closed set.

Remark 3.20 The intersection of two $(1,2)^*$ - $\pi g\theta$ -closed sets need not be $(1,2)^*$ - $\pi g\theta$ -closed as seen in the following example.

Example3.21 Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}; \tau_2 = \{\phi, \{a, b, d\}, X\}$: Let $A = \{a, b, c\}$ and $B = \{a, b, d\}$. Clearly A and B are $(1, 2\}^* - \pi g \theta$ -closed sets. But $A \cap B = \{a, b\}$ is not a $(1, 2)^* - \pi g \theta$ -closed set.

Proposition 3.22 Let A be $(1,2)^*$ - $\pi g\theta$ -closed in (X,τ) . Then $(1,2)^*$ - $cl_{\theta}(A)$ -A does not contain any non-empty $\tau_1\tau_2$ - π -closed set.

Proof: Let F be a non-empty $\tau_1\tau_2$ - π -closed set such that $F \subset (1,2)^*$ - $cl_{\theta}(A)-A$. Since A is $(1,2)^*-\pi g\theta$ -closed, $A \subset X-F$ where X-F is $\tau_1\tau_2$ - π -open implies $(1,2)^*$ - $cl_{\theta}(A) \subset (X-F)$. Hence $F \subset X-(1,2)^*-cl_{\theta}(A)$. Now, $F \subset (1,2)^*-cl_{\theta}(A) \cap X-(1,2)^*-cl_{\theta}(A)$ implies $F = \phi$ which is a contradiction. Therefore $cl_{\theta}(A)-A$ does not contain any non-empty $\tau_1\tau_2$ - π -closed set.

Remark 3.23 The converse of Proposition 3.22 need not be true as shown in the following example.

Example 3.24 Let $X = \{a,b,c\}$. $\tau_1 = \{\phi, X, \{b\}\}$; $\tau_2 = \{\phi, X, \{c\}\}$: Let $A = \{b,c\}$. Then $(1,2)^*$ -cl_{θ}(A) –A contains no non-empty $\tau_1\tau_2$ - π -closed set. However A is not $(1,2)^*$ - $\pi g\theta$ -closed.

Proposition 3.25 If A is a $\tau_{1,2}$ -regular open and $(1,2)^*-\pi g\theta$ -closed subset of (X,τ_1,τ_2) , then A is a $(1,2)^*-\theta$ -closed subset of (X,τ_1,τ_2) .

Proof. Since A is $\tau_{1,2}$ -regular open and $(1,2)^*$ - $\pi g\theta$ -closed, $(1,2)^*$ - $cl_{\theta}(A) \subset A$. Hence A is $(1,2)^*$ - θ -closed.

Proposition3.26 Let A be a $(1,2)^*$ - $\pi g\theta$ -closed subset of (X,τ_1,τ_2) . If $A \subset B \subset (1,2)^*$ - $cl_{\theta}(A)$, then B is also a $(1,2)^*$ - $\pi g\theta$ -closed subset of (X,τ_1,τ_2) .

Proof. Let U be a $\tau_1\tau_2$ - π -open set of (X,τ_1,τ_2) such that $B \subset U$. Then $A \subset U$. Since A is a $(1,2)^*$ - $\pi g\theta$ -closed set, $(1,2)^*$ - $cl_{\theta}(A) \subset U$. Also since $B \subset (1,2)^*$ - $cl_{\theta}(A), (1,2)^*$ - $cl_{\theta}(B) \subset (1,2)^*$ - $cl_{\theta}((1,2)^*$ - $cl_{\theta}(A))=(1,2)^*$ - $cl_{\theta}(A)$. Thus $(1,2)^*$ - $cl_{\theta}(B) \subset U$. Hence B is also a $(1,2)^*$ - $\pi g\theta$ -closed subset of (X,τ_1,τ_2) .

Theorem 3.27 Let A be a $(1,2)^*$ - $\pi g\theta$ -closed sub set in X. Then A is $(1,2)^*$ - θ -closed if and only if $(1,2)^*$ - $cl_{\theta}(A)$ -A is $\tau_{1,2}$ - π -closed.

Proof. Necessity: Let A be $(1,2)^*-\theta$ -closed subset of X. Then $(1,2)^*-cl_{\theta}(A)=A$ and $(1,2)^*-cl_{\theta}(A)-A=\phi$ which is $\tau_{1,2}$ - π -closed.

Sufficiency: Since A is $(1,2)^*$ - $\pi g\theta$ -closed, by proposition 3.22 $(1,2)^*$ - $cl_{\theta}(A-A \text{ contains no non-empty } \tau_{1,2}$ - π -closed set. But $(1,2)^*$ - $cl_{\theta}(A) - A$ is $\tau_{1,2}$ - π -closed. This implies $(1,2)^*$ - $cl_{\theta}(A) - A = \phi$, which means $(1,2)^*$ - $cl_{\theta}(A) = A$ and hence A is $(1,2)^*$ - θ -closed.

IV. $(1,2)^*$ - $\pi g \theta$ -open sets

Definition 4.1 A subset A of (X, τ_1, τ_2) is called $(1,2)^*$ - $\pi g\theta$ -open if and only if A^c is $(1,2)^*$ - $\pi g\theta$ -closed in (X, τ_1, τ_2) .

Remark 4.2 For a subset A of $(X, \tau_1, \tau_2), (1,2)^*-cl_{\theta}(A^c) = [(1,2)^*-int_{\theta}(A)]^c$

Theorem 4.3 A subset A of (X, τ_1, τ_2) is $(1, 2)^*$ - $\pi g \theta$ -open if and only if $F \subset (1, 2)^*$ -int_{θ}(A) whenever F is $\tau_1 \tau_2$ - π -closed and $F \subset A$.

Proof. Necessity: Let A be a $(1,2)^*$ - $\pi g\theta$ -open set in (X,τ_1,τ_2) . Let F be $\tau_1\tau_2$ - π -closed and $F \subset A$. Then $F^c \supseteq A^c$ and F^c is $\tau_1\tau_2$ - π -open. Since A^c is $(1,2)^*$ - $\pi g\theta$ -closed, $(1,2)^*$ - $cl_{\theta}(A^c) \subseteq F^c$. By remark 4.2, $[(1,2)^*$ - $int_{\theta}(A)]^c \subseteq F^c$. That is $F \subset (1,2)^*$ - $int_{\theta}(A)$.

Sufficiency: Let $A^c \subseteq U$ where U is $\tau_1 \tau_2$ - π -open. Then $U^c \subset A$ where U^c is $(1,2)^*-\tau_1 \tau_2$ - π -closed. By hypothesis $U^c \subseteq (1,2)^*-int_{\theta}(A)$. That is $[(1,2)^*-int_{\theta}(A)]^c \subseteq U$. By remark 4.2, $(1,2)^*-cl_{\theta}(A^c) \subseteq U$. This implies A^c is $(1,2)^*-\pi g\theta$ -closed. Hence A is $(1,2)^*-\pi g\theta$ -open.

Theorem 4.4 If $(1,2)^*$ -int_{θ}(A) \subseteq B \subseteq A and A is $(1,2)^*$ - π g θ -open, then B is also $(1,2)^*$ - π g θ -open.

Proof. $(1,2)^*$ -int_{θ}(A) \subseteq B \subseteq A implies A^c \subseteq B^c \subseteq [(1,2)*-int_{θ}(A)]^c. By remark 4.2 A^c \subseteq B^c \subseteq (1,2)*-cl_{θ}(A^c). Also A^c is (1,2)*- π g θ -closed. By Proposition 3.26 B^c is (1,2)*- π g θ -closed. Hence B is (1,2)*- π g θ -open.

As an application of $(1,2)^*$ - $\pi g\theta$ -closed sets we introduce the following definition.

Definition 4.5 A space (X,τ_1,τ_2) is called a $(1,2)^*-\pi g\theta$ -T_{1/2} space if every $(1,2)^*-\pi g\theta$ -closed set is $(1,2)^*-\theta$ -closed.

Theorem 4.6 For a space (X,τ_1,τ_2) the following conditions are equivalent. (i) (X,τ_1,τ_2) is a $(1,2)^*-\pi g\theta$ -T_{1/2} space. (ii) Every singleton set of (X,τ_1,τ_2) is either $\tau_1\tau_2$ - π -closed or $(1,2)^*$ - θ -open.

Proof. (i) \Rightarrow (ii). Let $x \in X$. Suppose $\{x\}$ is not a $\tau_1\tau_2$ - π - closed set of (X, τ_1, τ_2) . Then $X-\{x\}$ is not a $\tau_1\tau_2$ - π open set. So X is the only $\tau_1\tau_2$ - π -open set containing $X-\{x\}$. So X-x is a $(1,2)^*$ - $\pi g\theta$ -closed set of (X,τ_1,τ_2) . Since (X,τ_1,τ_2) is a $(1,2)^*$ - $\pi g\theta$ - $T_{\frac{1}{2}}$ space, X-x is a $(1,2)^*$ - θ -closed set of (X,τ_1,τ_2) or equivalently $\{x\}$ is a $(1,2)^*$ - θ open set of (X,τ_1,τ_2) .

(ii) \Rightarrow (i). Let A be a (1,2)*- $\pi g\theta$ -closed set of X. Trivially $A \subset (1,2)^*$ - $cl_{\theta}(A)$. Let $x \in 1,2$)*- $cl_{\theta}(A)$. By (ii) {x} is either $\tau_1 \tau_2$ - π -closed or (1,2)*- θ -open.

(a) Suppose that $\{x\}$ is $\tau_1 \tau_2 - \pi$ -closed. If $x \notin A$, then $x \in (1,2)^*$ -cl₀(A)–A contains a non-empty $\tau_1 \tau_2 - \pi$ -closed set $\{x\}$. By proposition 3.6 we arrive at a contradiction. Thus $x \in A$.

(b) Suppose that $\{x\}$ is a $(1,2)^*-\theta$ -open. Since $x \in (1,2)^*-cl_{\theta}(A) = A$ or equivalently A is $(1,2)^*-\theta$ -closed. Hence (X,τ_1,τ_2) is a $(1,2)^*-\pi g\theta$ -T_{1/2} space.

V. $(1,2)^*$ - $\pi g\theta$ -continuous and $(1,2)^*$ - $\pi g\theta$ -irresolute functions

Definition 5.1 A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called $(1,2)^*-\pi g\theta$ -continuous if every $f^1(V)$ is $(1,2)^*-\pi g\theta$ -closed in (X,τ_1,τ_2) for every $(1,2)^*-\sigma_1\sigma_2$ -closed set V of (Y,σ_1,σ_2) .

Definition 5.2 A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called $(1,2)^* - \pi g\theta$ -irresolute if $f^1(V)$ is $(1,2)^* - \pi g\theta$ -closed in (X,τ_1,τ_2) for every $(1,2)^* - \pi g\theta$ -closed set V in (Y,σ_1,σ_2) .

Remark 5.3 $(1,2)^*$ - $\pi g\theta$ -irresolute function is independent of $(1,2)^*$ - θ -irresoluteness, as seen in the following examples.

Example 5.4 Let $X=Y=\{a,b,c,d\}, \tau_1=\{\phi,\{a\},\{d\},\{a,d\},\{a,c,d\},X\}, \tau_2=\{\phi,\{a,d\},\{a,b,d\},X\}, \sigma_1=\{\phi,\{a\},\{d\},\{a,d\},X\},\sigma_2=\{\phi,\{c,d\},\{a,c,d\},X\}$. Let f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be an identity function. Then f is $(1,2)^*-\theta$ -irresolute but not $(1,2)^*-\pi g\theta$ -irresolute, since f¹[{b,c,d}]={b,c,d} is not $(1,2)^*-\pi g\theta$ -closed in (X,τ_1,τ_2) .

Example 5.5 Let X=Y={a,b,c,d}, τ_1 ={ ϕ ,{a},{d},{a,c,d},X}, τ_2 = { ϕ ,{a,d}, {a,b,d},X}, σ_1 ={ ϕ ,{a},{c}, {a,c}, {c,d},{a,c,d},X}, σ_2 = { ϕ ,{a},{a,c}, {c,d},{a,c,d},X}, σ_2 = { ϕ ,{a},{a,c},X, Let f: (X, τ_1,τ_2)→(Y, σ_1,σ_2) be an identity function. Then f is (1,2)*- π g θ -irresolute but not (1,2)*- θ -irresolute, since f¹[{a,b,d}] = {a,b,d} is not (1,2)*- θ -closed in (X, τ_1,τ_2).

Remark 5.6: Every $(1,2)^*-\theta$ -continuous is $(1,2)^*-\pi g\theta$ -continuous. The converse of the above need not be true as seen in the following examples.

Example 5.7: Let X=Y={a,b,c,d,e}, τ_1 ={ ϕ ,{a,b},{a,b,c},X}, τ_2 ={ ϕ ,{c},X}, σ_1 ={ ϕ ,{a,b}, {a,b,c,d}, X}, σ_2 ={ ϕ ,{c,d},{a,b,c,d}, X}. Let f: (X, τ_1 , τ_2) \rightarrow (Y, σ_1 , σ_2) be an identity function. Then f is (1,2)*- π g θ -continuous but not (1,2)*- θ -continuous, since f¹[{c,d,e}]={c,d,e} is not (1,2)*- θ -closed in (X, τ_1 , τ_2).

Remark 5.8 $(1,2)^*$ - $\pi g\theta$ -continuous is independent of $(1,2)^*$ - $\pi g\theta$ -irresolute as seen in the following examples.

Example 5.9 Let X=Y={a,b,c,d,e}, τ_1 ={ ϕ ,{a,b},{a,b,c,d},X }, τ_2 ={ ϕ ,{c,d},X}, σ_1 ={ ϕ ,{b}, {b,c}, X }, σ_2 ={ ϕ ,{c},{a,b},{a,b,c}, X }.Let f: (X, τ_1 , τ_2) \rightarrow (Y, σ_1 , σ_2) be an identity function. Then f is (1,2)*- π g θ -continuous but not (1,2)*- π g θ -irresolute, since f¹[{d}]={d} is not (1,2)*- π g θ -closed in (X, τ_1 , τ_2) where {d} is π g θ -closed in (Y, σ_1 , σ_2).

Example 5.10: Let $X=Y=\{a,b,c,d\}, \tau_1=\{\phi,\{a\},\{b\},\{a,b\},\{a,b,c\},X\}, \tau_2=\{\phi,\{b\},\{c\},\{b,c\},\{a,c\},\{a,b,c\},\{a,b,c\},\{a,b,c\},\{a,b,c\},\{a,c\},\{a,c,d\},X\},\sigma_1=\{\phi,\{a\},\{b\},\{a,d\},\{a,d\},\{a,b,d\},X\},\sigma_2=\{\phi,\{c\},\{a,c\},\{b,c\},\{a,b,c\},\{a,c,d\},X\}$.Let f: (X, τ_1,τ_2) \rightarrow (Y, σ_1,σ_2) be an identity function. Then f is (1,2)*- π g θ -irresolute but not (1,2)*- π g θ -continuous, since f¹[{b}]={b} is not (1,2)*- π g θ -closed in (X, τ_1, τ_2) where {b} is closed in (Y, σ_1,σ_2).

Remark 5.11 The above discussions are summarized in the following diagram.

Where $(1) \Rightarrow (1,2)^*-\theta$ -continuous; $(2) \Rightarrow (1,2)^*-\pi g\theta$ -continuous; $(3) \Rightarrow (1,2)^*-\pi g\theta$ -irresolute; $(4) \Rightarrow (1,2)^*-\theta$ -irresolute.

Remark 5.12 Composition of two $(1,2)^*$ - $\pi g\theta$ -continuous function need not be $(1,2)^*$ - $\pi g\theta$ -continuous.

Example 5.13 Let $X=Y=Z=\{a,b,c,d,e\}, \tau_1=\{\phi,\{a,b\},\{a,b,c\},X\}, \tau_2=\{\phi,\{c\},X\},\sigma_1=\{\phi,\{a,b\},X\}, \sigma_2=\{\phi,\{c,d\},\{a,b,c,d\},X\}, \eta_1=\{\phi,\{a,b,c,d\},X\}, \eta_2=\{\phi,\{e\},X\}$. Let $f:(X,\tau_1,\tau_2)\to(Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2)\to(Z,\eta_1,\eta_2)$ be the identity functions. Both f and g are $(1,2)^*$ - $\pi g\theta$ -continuous but gof is not $(1,2)^*$ - $\pi g\theta$ -continuous, since $(gof)^{-1}[\{a,b,c,d\}]=\{a,b,c,d\}$ is not $(1,2)^*$ - $\pi g\theta$ -closed in (X,τ_1,τ_2) .

Theorem 5.14 Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function.

(i) If f is $(1,2)^*$ - $\pi g\theta$ -irresolute and X is $(1,2)^*$ - $\pi g\theta$ -T_{1/2} space, then f is $(1,2)^*$ - θ -irresolute.

(ii) If f is $(1,2)^*-\pi g\theta$ -continuous and X is $(1,2)^*-\pi g\theta$ -T^{1/2} space then f is $(1,2)^*-\theta$ -continuous.

Proof: (i) Let V be $(1,2)^*-\theta$ -closed in Y. Since f is $(1,2)^*-\pi g\theta$ -irresolute, $f^1(V)$ is $(1,2)^*-\pi g\theta$ -closed in X. Since X is $(1,2)^*-\pi g\theta$ -T_{1/2} space, $f^1(V)$ is $(1,2)^*-\theta$ -closed in X. Hence f is $(1,2)^*-\theta$ -irresolute.

(ii)Let V be closed in Y. Since f is $(1,2)^*-\pi g\theta$ -continuous, $f^1(V)$ is $(1,2)^*-\pi g\theta$ -closed in X. By assumption, it is $(1,2)^*-\theta$ -closed. Therefore f is $(1,2)^*-\theta$ -continuous.

Theorem 5.15 If the bijective f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is $(1,2)^*-\theta$ -irresolute and $\tau_1\tau_2$ - π -open map, then f is $(1,2)^*-\pi g\theta$ -irresolute.

Proof: Let V be $(1,2)^*$ - $\pi g\theta$ -closed in Y. Let $f^1(V) \subset U$ where U is $\tau_1 \tau_2$ - π -open in X. Then $V \subset f(U)$ and f(U) is $\tau_1 \tau_2$ - π -open implies $(1,2)^*$ - $cl_{\theta}(V) \subset f(U)$. This implies $f^1((1,2)^*-cl_{\theta}(V)) \subset U$. Since f is $(1,2)^*-\theta$ -irresolute, f $^1((1,2)^*-cl_{\theta}(V))$ is $(1,2)^*-\theta$ -closed. Hence $(1,2)^*-cl_{\theta}(f^1(V)) \subset (1,2)^*-cl_{\theta}(f^1((1,2)^*-cl_{\theta}(V)))=f^1((1,2)^*-cl_{\theta}(V)) \subset U$. Therefore f is $(1,2)^*-\pi g\theta$ -irresolute.

Theorem 5.16 :If f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is $(1,2)^* - \pi g\theta$ -irresolute map and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is $(1,2)^* - \pi g\theta$ -continuous map, the composition gof: $(X,\tau_1,\tau_2) \rightarrow (Z,\eta_1,\eta_2)$ is a $(1,2)^* - \pi g\theta$ -continuous map.

Proof: Let V be $\eta_1\eta_2$ -closed set in Z. Since g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is a $(1,2)^*$ - $\pi g\theta$ -continuous map,g⁻¹(V) is $(1,2)^*$ - $\pi g\theta$ -closed in Y. By hypothesis ,f⁻¹(g⁻¹(V))=(gof)^{-1}(V) is $(1,2)^*$ - $\pi g\theta$ -closed in X. Hence gof: $(X,\tau_1,\tau_2) \rightarrow (Z,\eta_1,\eta_2)$ is a $(1,2)^*$ - $\pi g\theta$ -continuous map.

V. CONCLUSION

Through the above findings, this paper has attempted to compare $(1,2)^*-\pi g\theta$ -closed with the other closed sets in bitopological spaces. An attempt of this paper is to state that the several definitions and results that shown in this paper, will result in obtaining several characterizations and enable to study various properties as well. It brings to limelight that the weaker form of continuity in bitopological settings is the future scope of study.

REFERENCES

- [1] M. E. Abd El-Monsef, S.Rose Mary and M.Lellis Thivagar $(1,2)^*$ αg -closed sets in topological spaces, Assiut Univ. J. of Mathematics and Computer Science, Vol.36(1) (2007), 43-51.
- [2] M. Anandhi and C.Janaki: On πgθ-Closed sets in Topological spaces, International Journal of Mathematical Archive-3(11), 2012, 3941-3946.
- [3] I. Arockiarani and K. Mohana, $(1,2)^*$ - $\pi g \alpha$ -closed sets and $(1,2)^*$ -Quasi- α -normal Spaces in Bitopological settings, Antarctica j. Math.,7(3)(2010), 3465-355.
- [4] S. P. Arya and T. Nour: Characterizations of S-normal spaces, Indian J. Pure. Appl. Math., 21(1990), No. 8, 717-719.
- [5] P.Bhattacharya and B.K. Lahiri: Semi-generalised closed sets in topology, Indian J. Math., 29(1987), 375-382.
- [7] J. Dontchev and H. Maki,On θ-generalized closed sets,Internat.J. Math& Math.Sci. 22(2) (1999) 239-249.
- [8] J. Dontchev and T. Noiri, Quasi Normal Spaces and π g-closed sets, Acta Math. Hungar., 89(3)(2000). 211-219.
- [9] J. Dontchev and M. Przemski, The various decompositions of continuous and weakly continuous functions, Acta Math.
- Hungar., 71(1996), no. 1-2, 109-120.
- [10] E. Ekici and M. Caldas, Slightly-continuous functions, Bol. Soc. Parana. Mat. (3) 22 (2004), 63-74.
- [11] Govindappa Navalagi and Md. Hanif Page, θ -generalized semi-open and θ generalized semi-closed functions Proyectiones J. of Math. 28,2 (2009) 111-123.
- [12] C.Janaki, Studies on π g α -closed sets in Topology, Ph.D Thesis, Bharathiar University, Coimbatore (2009).
- [13] N.Levine: Semi-open sets and semi-continuity in topological spaces, Amer . Math. Monthly, 70 (1963), 36-41.
- [14] N.Levine: Generalised closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [15] H. Maki, R.Devi and K.Balachandran: Semi-generalised closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 14(1993), 41-54.
- [16] H. Maki, R. Devi and K. Balachandran generalized α-closed maps and α-generalised closed maps, Indian J. Pure . Appl. Math., 29(1998), No. 1, 37-49.
- [17] A.S. Mashhour, M. E. Abd El- Monsef and S.N. El Deeb: On pre continuous and weakly pre continuous mappings, Proc. Math. Phys. Soc. Egypt., 53(1982), 47-53.
- [18] O.Njastad: On some Classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [19] J.H. Park, On πgp-closed sets in topological spaces, Indian J. Pure. Appl. Math., (To appear).
- [20] O.Ravi and M.Lellis Thivagar, On Stronger forms of (1,2)* quotient mappings on bitopological spaces, Internat. J.Math.Game Theory & Algebra4(2004), No.6, 481-492.
 [21] O.Ravi, M.Lellis Thivagarand M.E.Abd El-Monsef, "Remarks on bitopological (1,2)*-quotient mappings", J. Egypt Math. Soc.
- [21] O.Ravi, M.Leins Thivagarand M.E.Abd El-Monser, "Remarks on bitopological (1,2)*-quotient mappings", J. Egypt Math. Soc. Vol. 16, No.1, pp.17-25,2008.
- [22] D.Sreeja and C.Janaki, On(1,2)*-πgb-closed sets, Inter. J. of Computer Applicationz (0975-8887), Vol.42.,No.5.
- [23] M.H. Stone : Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375-381.
- [24] N. V. Velicko, On H- closed topological spaces, Amer. Math. Soc. Transl., 78, (1968) 103-118.