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ABSTRACT

Designing efficient search algorithms is a key challenge in unstructuredt@eeer
networks. Flooding and random walk R are two typical search algorithms. Flooding searct
aggressively and covers the most nodes. However, it generates a large amount of query messi
thus, does not scale. On the contrary, RW searches conservatively. It only generates a fixedfal
query messages at each hop but would take longer search time. We propose the dynamic se¢
algorithm, which is a generalization of flooding and RW. DS takes advantage of various context:
which each previous search algorithm performs weliesiembles flooding for sherérm search and
RW for longterm search. Moreover, DS could be further combined with knowleased search
mechanisms to improvéd search performance. We analyze the performance of DS based or
performance metrics including the success rate, search time, query hits, query message:
efficiency, and search efficiency. Numerical results show that DS provides a good tleteetn
search performance and cost. On average, DS performs about 25 times better than flooding
times better than RW in powkw graphs, and about 186 times better than flooding and 120 ti
better than RW in bimodal topologies.

INDEX TERMS:Peetto-peer, performance analysis, search algorithm.

. INTRODUCTION

N unstructured pedn-peer (P2P) networks, each nodedoes not have global information about the
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whole topology and the location of queried resources. Because of the dynamic property of unstructured P2P

networks, correty capturing global behavior is also difficult [1], [2]. Search algorithms provide the capabilities
to locate the queried resources and to route the message to the target node. Thus, the efficiency of search

algorithms is critical tothe performance of wtructured P2P networks [3]. Previous works about search

algorithms in unstructureB2P networks can be classified into two categories: breadth first searchb@des)
methods, and depth first search (Df@sed methods. These two types of search algwittend to be
inefficient, either generating too much | oad

Flooding, which belongs to BF8ased methods, is the default search algorithm for Gnutella network [7], [8].

on

t

By this method, the qugisource sends its query messages to all of its neighbors. When a node receives a query
message, it first checks if it has the queried resource. If yes, it sends a
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response back to the query source to indicate a query hit. Otherwise, it sends the query messages to all
of its neighbors, except for the one the query message comes from. The drawback of flooding is the search cost.
It produces considable query messages even when the resource distribution is scarce. The search is especially
inefficient when the target is far from the query source because the number of query messages would grow
exponentially with the hop counts. Fig. 1 illustratesdperation of flooding. The link degree of each vertex in
this graph is 4. If the network grows unlimited from the query source, the number of query messages generated
by flooding at each hop would be 4, 12, 36, . . ., respectively. If the queried relooates at one of the third
neighbors, it takes 4p12p36Y452 query messages to get just one query hit.

On the other hand, random walk (RW) is a conservative search algorithm, which belongsbiasB&S
methods [9], [10], [11], [12], [13]. By RW, the quesgurce just sends one query message (walker) to one of its
neighbors. If this neighbor does not own the queried resource, it keeps on sending the walker to one of its
neighbors, except for the one the query message comes from, and thus, the searcediogstds The main
drawback of RW is the long search time. Since RW only visits one node for each hop, the coverage of RW
grows linearly with hop counts, which is slow compared with the exponential growth of the coverage of
flooding. Moreover, the succesate of each query by RW is also low due to the same coverage issue.
Increasing the number of walkers might help improve the search time and success rate, but the effect is limited
due to the link degree and redundant path. As the example shown in R dan only visit 12 vertices of
second neighbors even when the number of walkers is set as 32. Certainly, the search is inefficient because 32
walkers only visit 12 vertices at the second hop.

Authorized licensed use limited to: Shree MotilalKanhaiyalaiFa Institute. Downloaded on August 12,2010
at 08:33:11 UTC from IEEE Xplore. Restrictions apply.
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Fig. 1. A simple scenario of P2P network to demonstrate the operatiaf flooding and RW.

DS overcomes the disadvantages of flooding and RW and takes advantage of different contexts under
which each search algorithm performs well. The operation of DS resembles flooding for thtersh@tarch
and RW for the longerm sarch. In order to analyze the performance of DS, we apply the random graphs as the
models of network topologies and adopt the probability generating functions to model the link degree
distribution [14]. We evaluate the performance of search algorithmsdordance with some performance
metrics including the success rate, search time, number of query hits, number of query messages, query
efficiency, and search efficiency [9], [15], [16]. Simulation experiments are performed in a dynamic P2P
networking envionment in order to collect convincing results for algorithm evaluations. The factors considered
include the network topology, l ink degree distributi
as the activity of file sharing [10], [17], 81, [19]. Our dynamic network model is constructed based on these
factors that strongly reflect the real measurement studies [17], [20], [21], [22]. Numerical results show that DS
could provide a good tradeoff between search performance and cost. Oreal8guerforms about 25 times
better than flooding and 58 times better than RW in pdaergraphs, and about 186 times better than flooding
and 120 times better than RW in bimodal topologies.The rest of this paper is organized as follows: Section 2
showsthe related works about the search issue in unstructured P2P networks, followed by the detailed
description of the proposed DS algorithm in Section 3. The performance analysis is given in Section 4.
Numerical results and discussions are given in Sectibimélly, the conclusion is presented in Section 6.
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. RELATED WORKS

Flooding and RW are two typical examples of blind search algorithms by which query messages are
sent to neighbors without any knowledge about the possible locations of the queriecesesoany preference
for the directions to send. Some other blind search algorithms include modified BFS (MBFS) [23], directed BFS
[6], expanding ring [17], and random periodical flooding (RPF) [24]. These algorithms try to modify the
operation of floodig to improve the efficiency. However, they still generate a large amount of query messages.
Jiang et al. propose a LightFlood algorithm, which is a combination of the initial pure flooding and subsequent
treebased flooding [25], [26]. DS and LightFloogerateanalogously, but DS avoids the extra cost to construct
and maintain the treelike suboverlay.Knowledgesed search algorithms take advantage of the knowledge
learned from previous search results and route query messages with different weights basddhowdedge.
Thus, each node could relay query messages more intelligently. Some examples are adaptive probabilistic
search (APS) [27], [28], biased RW [29], routing index (RI) [30], local indices [31], and intelligent search [32].
APS builds the kneledge with respect to each file based on the past experiences. RI classifies each document
into some thematic categories and forwards query messages more intelligently based on the categories. The
operation of local indices is similar to that of super networks. Each node collects the file indices of peers
within its predefined radius. | f a search request i
flooding search. The intelligent search uses a function to compute the similarity betwesschacgiery and
recently answered requests. Nodes relay query messages based on the similarity. There are some other research
works that focus on replicating a reference pointer to queried resources in order to improve the search time [33],
[34].

11, DYNAMIC SEARCH ALGORITHM
In this section, we provide the details of the proposed DS algorithm. Section 3.1 presents the operation
of DS algorithm, and Section 3.2 provides the mechanism to combine DS with the knelbdsddesearch
algorithms.

3.1 Operation of Dynamic Search Algorithm

DS is designed as a generalization of flooding, MBFS, and RW. There are two phases in DS. Each
phase has a different searching strategy. The choice of search strategy at each phase depends on the relationship
between the hop count i query messages and the decision thiadm of DS.

3.1.1 Phase 1. When hn

At this phase, DS acts as flooding or MBFS. The number of neighbors that a query source sends the
guery messages to depends on the predefined transmission probabilttyeplink degree of this query source
is d, it would only send the query messages_to kleighbors. When p is equal to 1, DS resembles flooding.
Otherwise, it operates as MBFS with the transmission probability p.

3.1.2 Phase 2. Whenh >n

At this phasethe search strategy switches to RW. Each node that receives the query message would
send the query message to one of its neighbors if it does not have the queried resource. Assume that the number
of nodes visited by DS at hop h¥an is the coverggara tlen the operation of DS at that time can be regarded
as RW with ¢ walkers. However, there are some differences between DS and RW when we consider the whole
operation. Consider the simple scenario shown in Fig. 1. Assume that the decision thresholds2s\aéten
h >2, DS performs the same as RW wit.t2 walkers. Let us consider an RW search with K¥12 walkers. At
the first hop, the walkers only visit four nodes, but the cost is 12 messages.

656IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTELESYSTEMS, \OL. 20, NO. 5, MAY
2009
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Algorithm: The pscudo-code of dynamic scarch DS
Input: query source s, queried resource f, transmission probabil-
ity p
Output: the location information of f
DS(s, f, p)
/* the operation of s */
h< 0
if (h <=n)
h—h+1
s choose p portion of its neighbors
n; carring h visits these chosen neighbors
elseif (h > 1) i 1
h<—h+1 5 o
mi carring /1 visits one neighbor of s ik
/* the operation of r */
foreach (r)

if (r has the location information of f)
r returns the information to s
i stops
elseif (> TTL)
mi stops
elseif (h <=n)
h< h+l
r choose p portion of its neighbors
mj carring h visits these chosen neighbors
elseif (1 > n)
h< h+l
ni: carring h visits one neighbor of »

Fig. 2.The pseudocode of DS algorithm.
Fig. 3.lllustration for the operation of
owledgebased DS algorithm.

RW would generate a large amount of redundant messages when K islaegjedduppose that s is the query
source, r is the vertex that receives the query message, f is the queried resasrttes ith query message, and

TTL is the timeto-live limitation. Fig. 2 shows the pseudocode of DS.In short, DS is designed tonperfor
aggressively for the sherérm search and conservatively for the ldagn search. Obviously, the parameters n

and p would affect the performance of DS. In Section 3.2, we will analyze the performance of DS andshow the
effects of parameters n and p.

3.2 KnowledgeBased Dynamic Search

Some knowledgdased search algorithms, including APS, biased RW, RI, local indices, and intelligent
search, are applicable to combine with our DS algorithm, and any training or caching operations are benefit
from our DS algdthm as well. In this section, we present the generic scheme to incorporate these knowledge
based search algghms with our DS algorithm. We construct the probabilistic function based on the
information learned from the past experiences, with respeeath search target, search time, and local
topology information. Thus, a node has more information to intelligently decide how many quesggasso
send and to which peers these messages should be forwarded. Take APS as an example. The peer @pplying AP
search builds a probability table for each neighbor and each object. It consistently refines its probability table by
the search experiences. If a search query for some object delivers to a certain neighbor successfully, the
probability entry correspondng to that neighbor and object is increased. If the search fails finally, it will
decrease the probability entry. In accordance with APS, when a certain node receives a hit from peer i, it adds
10 points for the entry of peer i; if peer i fails to resptmaihit to that node, the node subtracts 10 points for the
entry of peer i.

Fig. 3 shows an example of knowledgagsed DS algorithm. Node A initializes a search for a certain object. It
makes its forwarding decision of which neighbors should be semt a@dordance with the probability table

shown in Table 1. Assume the messages are sent to nodes B, C, and F. When node B receives the message, it
checks its probability table shown in Table 1 and generates another two query messages to nodes | and G.

V. PERFORMANCE EVALUATION
In this section, we present the performance evalu
network topology, adopt the generation functions to model the link degree distribution [14], and analyze DS
based on some performancetrus, including the success rate, search time, query hits, query messages, query
efficiency, and search efficiency. The analysis by generating functions talks about a graph all of whose
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parameters are exactly what they should be on an average randomAdttapiigh the analysis using generat
ing functions has appeared in many places by physicists, e.g., [10], it maybe not strict enough in the computer
science context.Mihail et al. provide a strict analysis for RWs in ptaverandom graphs [35].

4.1 Network Model

First

we summari ze
for the distribution of the vertex degree k&P can be represented as

Ne wman 6 s (Owpobe the geremting funttibne r an d

wherep is the probability that a raothly chosen vertex in the graph has degree k, and m is the maximum

degree.

m
Godxb ¥u  px* o1k
k¥4l
X
TABLE 1
Node C D E B F
Prob. 0.78 0.12 0.04 0.85 0.92
(a)
Node G H I - -
Prob. 0.84 0.23 0.76 - -
(b)

(a) Probability table for node A. (b) Probability table for node B.
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Based on the generating function, the average degree of a randomly chosen vertex is given by

m
2:Y4 hki YVakpvs G81b:

kval

X

The average number of second neighbors is

d

_ 606G16XF
b Y G1PG%1b;

Z,Ya  dx

xYal

where Goxp is given b

G

Goo fo)'4
X P

el

18 b ¥Gp

02k

o3k

4

op

Due to the difficultiego correctly measure and sample the operational P2P networks, there are only limited real
data about the topologies of such networks. In this paper, we will use the top two most common topologies, the
powerlaw graphs and the bimodal topologies, to evala¢ search performance.

4.1.1 PoweiLaw Graphs

For the poweitaw random graph with the degree exponery is proportional to ¥ [36]. That is,

pk/ k—:

o5pb
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According to [11], the following approximations for the poviaaw distribution are obtaed:

1
Gy olPQ 281 mP—b 36k
and
1 3
G°1PQ G81p_ 3 a7k

assuming2<<3.

4.1.2 Bimodal Topologies

For the bimodal network topology [12], [29], few uHpaers are connected to a large number oésod
and the rest have few neighbors. This assumption is regarded as realistic and followed by most papers such as
[37] and [38]. The probability that a randomly chosen peer belongs to the

ultra-peers is denoted agq, and the probability that this pebelongs to the other part with few neighbors is
thus

Pew”s 1 _puwa The degrees of the ultpeers and thepeers with few neighbors are denotedyaakd k.
Applying these parameters to (1), (2), (3), and (4), the

average number of neighborseaich hop for the bimodal topologies could be obtained.

4.2 Performance Analysis
4.2.1 Success Rate SRP

The success rate dSRP is the probability that a query is successful, i.e., there is at least one query hit.
Assume that the queried resources are umifpdistributed in the network with a replication ratio R. SR can be
calculated as

SRY: 181 RE; a8p

whereR is the replication ratio, and C is the coverage. This formula shows that SR highly depends on the
coverage of the search algorithms. We u$aq®btain an important performance metric, the search time 0STb,
in the following.

4.2.2 Search Time 0ST b

To represent the capability of one search algorithm to find the queried resource in time with a given probability,
we define the search time dShs the time it takes to guarantee the query success with success rate requirement
SReq ST represents the hop count that a search is successful with a probabilistic guarantee. Using (8), ST is
obtained when the coverage C is equal tgleg1l SRe{P. For MBFS search algorithms, this situation occurs
when

p G 1 201061 3H1 H12

= b
_ 0 0 _18bf _0 _ 18b
STvers_
OPPSTyersd G 1 G 1 1- 9
b 8

b_
b _0- 1b Sk
1,'°9%51 Rp& SRreqP

Thus ST for MBFS is

p G 1 1 log 1 SR
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0l R rec

STMBF % G,% 16b_ PP b
S 1p 6 1:
Y, _ Jatp b !

010k

ST of flooding is analog to that of MBFS with probability p % 1.

The calculation of RW depends on the number of walkersk. When Kk is set as 1, ST for RW is obviously
[0gs1 reO1_SRedP. When Kk is larger than 1, assume that

G '01b -G,°%81p" kG, °01b -G,°%81b";, 811k
i.e., k is equal to or larger than the average lmemof the tthneighbors of the query source, and assume that
theeffect of redundant paths can be neglected, and then the calculation for ST of RW can be expressed as

01 01 91 1 0 1t1
dE d3bp _ 8
WBpp 0 _ 1 b o0odp_16b 12
Sk oF
b k_GSTRW_tID 1/4 |0§17R|;61_ _reqp _
ST for RW is
tl i

STruwY4 loqél_Rpal_SRreqp_kpp/foGoOalp__GlOalp_ bt o13p
Now, we consider ST for DS. When the hop count h of the query message is smaller than or equal to the
decision threshold n, ST of DS is equal to (10). When h is larger than n, the calculation can be expressed as

pG 1 P& 16 1pP 81 &1 2

8E 8E 8
BGbPE _ ( _18PF _0 _ 1F
PPG1 G ™ng 14
0 (1 o _
0O b
b 1 (P 3k
G_O n

b -1 1 DS_ @blog® -18 Sec:

_®¥p 8 _b¥ B1LRP- b

658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 20, NO. 5, MY 2009

|[Issn 2250 -3005 || [|3uly]|2013]| Page 52

On



|l eee Transactions

Therefore, ST for DS

951 Rp& SRreqb
STosantp" G’1 G ,n.1

On

1
Pe— 10
_ 05,0 b 1
_0F _
pG1 1 pG1na 0815k
_1°3b %8P
SRre
_log1RF1_ g _
58 ° b
Qngk pnieooélbi_GloélD_n_l _L
We compare ST 6s for DS and RW with one walker. The
o1
STrw_ STos Gl b 1
1 . T 1€
Sw Q _G' b _p G™ 3k

In (16), the last term on the right would significantly affect the performance improvement. ST of DS
would be exponetially decreased with n, which can be expressed as Od1=nb. Larger p would also affect the
performance, but the effeist slow when compared with n. The extreme case of n is that it is set as TTL, i.e., DS
performs as flooding or MBFS. In this case, ST would be the shortest, whereas it would also generate ahuge
amount of query messages at the same time. The tradeoffelbetive search performance and the cost should
be taken into consideration. In the following paragraphs, we further analyze the number of query hits and the
number of query messages and further combine these metrics into the query efficiency and siancly. effi

4.2.3 Query Hits 6QHP

The number of query hits highly depends on the coverage, i.e., the number of total visited nodes.
Assume that the queried resources are uniformly distributed with the replication ratio R in the network, and the
coverage iC. The number of query hits is R. The coverage C can be regarded as the summation of the
coverage at each hop. Therefore, we first analyze the covefagd¢h@ hth hop. Let Nbe the event that a vertex
is visited at thehthhop. Supposethe probabiligt the vertex i is visited at the hth hop 8\RP. When the hop
count h ¥ 1,¢ls the expectation of thevertices that are visited at the first hop. When the hop count h is larger
than 1, the calculation of Ghould preclude the event that the vertex lean visited in the previous hop.
Therefore, the coverage, @t the hth hop can be written as

i PoV,pb
8 "; forh ¥ 1;
Ya
h nh_ 17
y,>P 1 8 F
> 1 fYp FfiYh: forh 2
ival
< Ml _ 8 b_86F _
P Q_ _

>

whereN is the total number of vertices in the network. Next, we analyze the visiting probadilifly For

flooding, MBFS, RW, and DS, respectively. First, we consider thadifqy and MBFS cases. The visiting
probability RoV,p of flooding or MBFS is

PAVib ¥ p_p G81b; G'1h 1 ; forh¥s1;
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1 1- pp for h > 018k

ob-
wherep is the probability that vertex i is to be reached byaie edge. Aiello et al. [39] shows thatgan be
written as
m=i*-
pivpnm

i1

919p

where_is the poweilaw exponent, and m is the maximum degree.

When considering RW, we first calculate the probability that a vertex i is the candidate oERW, i.

G
poJ1; °h  forh 1
PORPY 1 1% G 1 1 ;forh¥ 2: 820k

p

R _
Then, the average number of candidates of RW at hop h is

n

rYRoOR,P: 021k
ival
X
Hence, the probability that vertex ivisited at hop h for RW is
h i
POVib VaRBRP 1 81 1=rb*; 822t

wherek is the number of walkers.

The calculation of visiting probability;®/,p for DS depends on the relation between h and n. When h
PaVybis given by (18). When h > n, (2@21), and (22) areused to ged¥,p, where k in (22) is set as,C.e.,
the coverage at the nth hop. Therefore, the visiting probabidity,Pof DS is given by

forh v,
p p GB1b: h1 1;
PV, 81 . pop G 1. for2 h n
o by> _ _  0F C, _
R- 1=r
“P s 1 1 -+ : forh>n:
>3 P" 8 _ Ei

923p
4.2.4 Query Messages 6QMpP
When considering the flooding and MBFS cases, the query messaereeeated at hop h is given by
& p_Gyo1b; for h ¥ 1; 24
Y. p_Gd1b_Cy4; forh_2: dE

When considering the RW case, the number of query messages for each hop keeps fixed as k, i.e., the number of
walkers. Therefore, the total numhmrquery messages for RW isKTL.

The calculation of query messages for DS depends on h and n. The query mgspagested at hop h for
DS can
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be written as
pG 1; forh 1
0 Y.
& %0 3P 1 for2_h_n; 825k
db
Y%“Cni  _ for h >n:

4.2.5 Query Efficiency 0QEP

The number of query hits 6QHP and the number of query messages 6QMP are tkeowell
performance metrics for the evaluations of search algorithms. Generally-isgedke objective ofearch
algorithms is to get the most query hits with the fewest query messages, but these two metrics often conflict
with each other. Therefore, it requires a more objective metric to evaluate the search performance.

Authorized licensed use limited tohi®e MotilalKanhaiyalalFomra Institute. Downloaded on August 12,2010
at 08:33:11 UTC from IEEE Xplore. Restrictions apply.
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659
We adopt the performance metrics proposed in [15rqefficiency QEP and search efficiency dSEP, which
consider both the search performance and the cost. The similar criterion can also be found in [9]. First, we
calculate QE. In [15], QE is defined as

TTLonn 1
h 1
QEYP "QM 8E R ; 326k

whereQHGShP is the query hits at the hth hop, QM is the total number of query messages generated during the
query, and R is the replication ratio of the queried object. Since a search getting hits in a faster fashion delivers
bet t e rexparisnees and should be gauged as the higher reputation, we modify (26) and show two types of

QE 6 s iis calziated as (26) shows, and Q&halizes searchresults coming from far away, i.e.,

™MQHh=h 1

QE % P h¥%loy®® R : 8327t
4.2.6 Search Efficiency 0SEP

The search efficiency 6SEP is proposed as a unified performance metric for search algorithms [15]. A similar
criterion can be found in [9]. While the query efficiency QE does not consider the success rate SR, SH is define
as

™ QHh=hSR

SE %" 00P & ; 828k
where QHAhP=h is the query hits in the hth hop weighted by the hop count, QM is the total number of query
messages generated during the query, SR is the probability that the query is successtie iig attheast one
query hit, and R is the replication ratio of the queried object. Thus, the success rate SR is taken into
consideration. Assume that the object is uniformly distributed in the network. Then, the query hit at the hth hop
is equal to the mitiplication of the coverage at the hth hop and the replication rate R. Therefore, (28) can be
written as

-
T
TTL L
cn _R=h 1_81 RP" hC,
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Ya
hYTT
SEYs 1 L R ; 029k
P hih
P v
whereG, is the coverage at the hth hop, ie the query messages generated at the hth hop, and R is the
replication ratio. We consider two types of SEs; &&es not penalize search results coming from far away, i.e.,

TT
L TTL o
hi1C, R1 1 F hwl
TTL -
SEL Y. o RP° ;. 030k
P hit
Py

andSk is calculated as (29) shows.

4.3 Experimental Environment

We construct the experimental environment to evaluate therpeni@ce of the knowledgigased DS
algorithm. For the network topology modeling, we model the P2P network as Gnutella to provide a network
context in which peers can perform their intended activities. The measurements in [17]

and [20] have suggested thag ttopology of Gnutella network has the property of-sggment powelaw link

distribution. Thus, we construct a P2P network of 100,000 peers in our simulator, in which the link distribution
follows the reported twsegment power law. We set the first powaav slope as 0.2316 and the second as

1.1373, which are similar to the ones used in [17]. The statistics result of the topology embedded in our
simulator are that the maximum link degree is 632, mean is 11.73, and standard deviation is 17.09. Once the
node (peer) degrees are chosen, we connect these peers randomly and reassure every peer is connected properly
(each peer has at least one link).

For the object distribution of the network, we assume there are 100 distinct objects with replication ratio of R
Y, 1 percent; totally, there are 100,000 objects in thenetwork. The distribution of the 100,000 objects over the
network follows the measurement characteristics reported in [21]. In addition, due to the dynamic
environmend peers join and leave dynamicdlylescribed in the following section, the total number of
objects available in the network will fluctuate according to the network size (humber of online peers), but the
replication ratio will roughly remain constant.

Our dynamic peer behavior modelingdaly follows the proposed idea of the peer cycle [18], which includes
joining, querying, idling, leaving, and joining again to form a cycle. The joining and leaving operations of peers
(include idling) are inferred and then modeled by the uptime and sehgiation distributions measured in [21]
and [22]. These measurement studies show similar results in the peer uptime distribution, where half of the peers
have uptime percentage less than 10 percent and the best 20 percent of peers have 45 percanimgpéme
We use the logjuadratic distribution suggested in [22] to rebuild the uptime distribution, which is plotted in
Fig. 4. However, for the session duration distribution, those two studies lead to different results. The median of
session time in [22p about 15 minutes, while it is 60 minutes in [21]. In our modeling, we choose the median
session duration time to be

20 minutes.

By these two rebuilt distributions, we can generate a

probability model to decide when a peer should join or leave the rieimd how long it should continually be
online. The basic rule to assign peers6 attributes i
uptime percentages and longer session durations, and vice versa. With these conditions, wéaweoag?

dynamic join/ leave pattern for peers. On average, there are 10 peers joining or leaving simultaneously. Since
the mean value of uptime distribution is about 18 percent, the resulting average number of online peers is
18,152. Moreover, the maximunumber of online nodes is 24,218, while the minimum number is 4,886.

We model the dynamic querying model as Poisson distribution with the idle #56 minutes; that is, each

peer will initiate a search every 50 minutes on average. Since there is nondiescirement about the idle time,

we just use an experiential value. The choice of this parameter is insensitive to our search performance
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Fig. 4. SE versus hop count when p is set as 1 and n is changed from 1 to 7laRawpology with N ¥4
10;000. When n is set as 2, DS gets the best performance for almost all hop counts.

Fig. 5. The effects of the parameters on; pb on the SE. Rawdopology with N ¥ 10;000. TTL ¥4 7. The best
SE is obtained when dn; pb is set as (2, 1).

the idle time of 50 minutes, there are thus about six queries or searches processing concurrently in the network
on average. Totally, in this-our simulation, wegenerate 43,632 search queries. Furthermore, for the query
distribution of search objects, we model it as zipf distribution with parameter a%40:82, similar to the ones used
in [17] and [27]. Finally, our s i winich raeasuresbashopcfant r a |
messaging passing and serves as a basic time unit for all peer operations.

V. NUMERICAL RESULTS AND DISCUSSION
In this section, we show the numerical results of performance evaluation. We show the effectiveness of
our DS algorithm ad the effects of parameters n and p in Section 5.1. Then, the performance evaluation results
of the knowledgébased DS algorithm are shown in Section 5.2.

5.1 Performance of Dynamic Search
5.1.1 Effects of Parameters n and p of DS

First, N is set as 10,00 Powerlaw topology is adopted and the exponeris set as 2.1, which is
analog to the reakorld situation [10]. Replication ratio R is set as 0.01 in this case. Fig. 4 illustrates how the
decision threshold n of DS would affect the system performdhee.to space constraints, we only show the
result when p is set as 1. The case n¥%1 is analog to RW with K equal to the number of first neighbors, which is
roughly 3.55 in this case. The case n¥%7 is equal to the flooding. As this figure shows, DS witbnd®ithe
qguery messages aggressively in the first three hops and gets good SE. However, theapedodegrades
rapidly as the hop increases. This is because the cost grows exponentially with the path length between the
query source and the target. ®e tontrary, SE of RW is better than that of the flooding when the hop is5 to 7.
When n is set as 2, DS gets the best SE for almost all hop counts. This figure shows that a good choice of
parameter n can help DS to take advantage of different contexts whith each search algorithm performs
well.In order to obtain the best dn; pb combination, we illustrate the dn; p; SEP results in Fig. 5. Here, N is set
as 10,000, R is set as 0.01, and TTL is set as 7. Under this

context, when p is large (0I), seting n¥22 would get the best SE. Moreover, the best n value
increases as p decreases, as Fig. 6 shows. For example, when p is set as 0.2, the best n would be 6 or 7. This is
because when p is small, n should be increased to expand the coverage. On the eaftoald be decreased
to limit the growth of query messages when p is large. Therefore, the parameters n and p provide the tradeoff
between the search performance and the cost. It shows the best SE is obtained when &n; pb is set as (2, 1). Due
to spaceconstraints, the best parameters for other contexts are skipped in this paper, which can be found through
similar operation.
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5.1.2 Search Time
We show the numerical results of ST in Fig. 7. In this case, N is set as 10,000, R is set as 0.01, and

TTL is set as 7.Similar results can be obtained when the parameters are set as other values. The walkers K for
RW are set as 1 and 32. The decision thresholds n are set as 2, 3, and 7, and p is setas 1. TTL is set as 7 in this
case, thus DS with n¥47 is equalflooding. From Fig. 7, DS with large n always gets the short ST because it
always covers more vertices. On the contrary, RW with K%1 always gets the longest ST since its coverage is
only incremental by one at each hop. When K is set as 32, its coveragtaiged and ST can beimproved.
However, DS still performs better than RW with 32 walkers even when n is set as only 2. Note that when n is set
as 3, DS performs as well as that with n¥47, i.e., the

Transmission Probability p

0.2

0 1 2 3 4
Decision Threshold n

Fig. 6. The best dn; pb combination whtiis set as 10,000, R is set as

0.01,and TTLissetas 7.
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respectively. The n of DS are setas 2, 3, and 7, and pis setas 1. TTL is set as 7 in this case, thus the DS with n
Y. 7 is equal to flooding.

Fig. 8. Search efficiency for different number of nodes N in the network. This figure shows the sgalfathiét
DS algorithm.

flooding, while does not generate as many query messages. In summary, DS with n%2 and p%1 would get the
best SE and significantly improve ST in this case. Whileincreasing n to 3, although SE is a little degraded, the

shortest ST isbtained.

5.1.3 Comparison with Other Advanced Search Algorithms
We also compare the performance of DS with that of other advanced search algorithms including

Hybrid Search [12] and Expanding Ring [17]. The number of nodes N is set as 10,000lahoexgponat _is

set as 2. 1. Replication ratio R is set as 0.01 in t
Hybrid Search is analog to that of RW. They both increase slowly with hop counts. SE of Expanding Ring is
analog to but a little worséan that of the flooding. This is because Expanding Ring would revisit the nodes it

has already visited before. It would thus generate redundant messages. SE of DS is better than that of Hybrid

Search and Expanding Ring for all hop counts.
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Fig.7showsSDs of these search algorithms. The operation ¢
G",81b. Based on our simulation parametefs3B> isroughly 16. Thus, ST of Hybrid Search is better than that

of RW(1) but worse than that of RW(32). ST of Erping Ring is almost one hop worse than that of the

flooding. When the flooding reaches the second neighbors at the second hop, Expanding Ring just revisits the

first neighbors and there is no increment in coverage. For SR requirement smaller than & D%2) is

shorter than that of Expanding Ring, while ST of DS(2) would be longer than that of Expanding Ring for SR
requirement larger than 0.7.

5.1.4 Scalability

In order to validate the scalability of our DS algorithm, we show the search effidendjfferent
number of nodes in Fig. 8. Nodes N are set as 10,000, 50,000, 100,000, and 500,000, respectively. The
replication ratio R is set as 0.01, and TTL is set as 7. This figure shows that our DS algorithm always performs
better than flooding andWR in spite of the number of nodes.

5.1.5 Performance under Various Network Topologies and Replication Ratios

Tables 2 and 3 show the search performance under paweandom graphs and bimodal topologies,
respectively. The replication ratio R is set as Op&tcent, 0.1 percent, and 1 percent, respectively. The
performance metrics including the success rate dSRbpP, search time dSTpP, number of query hits 3QHP, number of
guery messages 0QMP, query efficiency 6QEP, and search efficiency 0SEP are listed iblé#sesbia types
of QE6és and SE6s are shown. Ones without thawd penal t
SE), and others with the penalty (QBnd SEk), as mentioned in Section 4.2. When consideringaQ& QE,
RW performs the best becauseovers the fewest redundant nodes. Although RW generates the fewest query
messages, its SR, ST ,QH, and the resulting SE do not perform well. In most cases, DS can perform closely to
the flooding search when considering SR and ST without generatingrasquery messages as flooding does.
In summary, DS obtains satisfactory performances in spite of the number of nodes, the replication ratio, and the
network topologies. On average, it performs about 25 times better than flooding and 58 times bd®éf ithan
powerlaw graphs, and about 186 times better than flooding and 120 times better than RW in bimodal
topologies.

5.2 Performance of KnowledgeBased Dynamic Search

In this section, we evaluate the search performance in a network where every node les afapab
building knowledge with respect to the target through some learning mechanisms. Any forwarding mechanism
can improve the search performance by leveraging over the knowledge. For example, APS [27] uses the
adaptive probability learning mechanism aamdopts RW as the forwarding mechanism. Besides, other
forwarding mechanisms, e.g., MBFS or our dynamic forwarding, are also applicable to this learning mechanism.
In order to evaluate the search performance, we adopt APS learning mechanism to buildvibégen APS
learning builds a probability table for each neighbor and each object. When a query for certain object
forwarding to a certain neighbor succeeds, the relative probability (or weight) of the entry for that neighbor and
that object isAuthorized licensed use limited to: Shree MotilalKanhaiyalalFomra Institute. Downloaded on
August 12,2010 at 08:33:11 UTC from IEEE Xplore. Restrictions apgqlthorized licensed use limited to:
Shree MotilalKanhaiyalalFomra Institute. Downloaded on August 12,2008:33:11 UTC from IEEE Xplore.
Restrictions apply.
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TABLE 2a
Performance of Flooding in Powkaw Graphs
e Replication Ratio (R) = 0.01%
N Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (ST) QH) Qv (QE) (QE) (SE1) (SE2)
10k 0.99 4.13 1.00 113k 0.088 1.25 0.087 1.24
50k 0.99 3.57 5.00 997k 0.050 1.13 0.050 1.12
100k 1.00 3.38 10.00 2561k 0.039 0.88 0.039 0.88
500k 1.00 3.03 50.00 23M 0.022 0.49 0.022 0.49
Size Replication Ratio (R) = 0.1%
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (ST) (QH) QM) (QE1) (QE2) (SE1) (SE2)
10k 1.00 3.30 9.99 113k 0.088 1.96 0.088 1.96
50k 1.00 2.88 50.00 997k 0.050 1.13 0.050 113
100k 1.00 2.74 100.00 2560k 0.039 0.88 0.039 0.88
500k 1.00 248 500.00 23M 0.022 0.49 0.022 0.49
Gisa Replication Ratio (R) =1%
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (ST) QH) QM) (QE1) (QE2) (SE1) (SE2)
10k 1.00 247 99.94 113k 0.088 1.96 0.088 1.96
50k 1.00 220 500.00 997k 0.050 113 0.050 1.13
100k 1.00 2.10 1K 2561k 0.039 0.88 0.039 0.88
500k 1.00 1.93 5K 23M 0.022 0.49 0.022 0.49
TABLE 2b
Performance of RW in Powdraw Graphs
B Replication Ratio (R) = 0.01%
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (1) (QH) Q) (QE1) (QE2) (SE1) (SE2)
10k 0.0025 23k 0.0025 24.85 1.00 36.00 0.0025 0.09
50k 0.0028 23k 0.0028 28.18 1.00 35.71 0.0028 0.10
100k 0.0030 23k 0.0030 29.54 1.00 36.67 0.0030 0.11
500k 0.0032 23k 0.0033 3253 1.00 37.50 0.0032 0.12
Size Replication Ratio (R) = 0.1%
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) 51 (QH) QM) (QEy) (QE2) (SE1) (SE2)
10k 0.025 2k 0.025 24.85 1.00 36.40 0.025 0.91
50k 0.028 2k 0.028 28.18 1.00 36.79 0.028 1.03
100k 0.029 2k 0.030 29.54 1.00 37.24 0.029 1.08
500k 0.032 2k 0.033 32.53 1.00 37.19 0.032 1.19
S Replication Ratio (R) = 1%
™ Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
GR) 1) (QH) Q) (QEy) (QE>) (SE1) (SE2)
10k 0.22 229.11 0.25 24.85 1.00 37.23 0.22 8.19
50k 0.25 229.11 0.28 28.18 1.00 36.56 0.25 9.14
100k 0.26 229.11 0.30 29.54 1.00 36.62 0.26 9.52
500k 0.28 229.11 0.33 32.53 1.00 36.89 0.28 10.33
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increased. Otherwise, it is decreased. Since the flooding forwards messages to all of the neighbors, the learning
mechanism is useless for it, and so we do not evaluate flooding here. For the MBFS with APS learning, the
transmission probabiljtp is set as 0.2, which is chosen to keep the same amount of query messages as the other
search algorithms. The initial walker for APS is 10, the same as [27].The experimental results for different
search algorithms with the knowledge building mechanisrshown in Fig. 9. With APS knowledge building
mechanism, all search algorithms perform much better than they do withihdrized licensed use limited to:

Shree MotilalKanhaiyalalFomra Institute. Downloaded on August 12,2010 at 08:33:11 UTC from IEE Xp
Restrictions apply.
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TABLE 2c
Performance of DS in Powdiaw Graphs

Replication Ratio (R) = 0.01%

T:; Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency | Search Efficiency
(SR) (ST) (QH) (QM) (QE1) (QE>2) (SE1) (SE2)

10k 0.75 4.46 1.00 15k 0.67 17.39 0.50 13.04

50k 0.99 3.57 5.00 91k 0.55 17.16 0.50 16.99

100k 1.00 3.38 10.00 200k 0.5 16.77 0.50 16.77

500k 1.00 3.03 50.00 1240k 0.40 16.16 0.40 16.16

Size Replication Ratio (R) = 0.1%

~N) Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (ST) (QH) QM) (QE1) (QE2) (SE1) (SEz2)

10k 0.89 4.40 2.21 2k 1.00 22.26 0.89 19.81

50k 1.00 2.88 7.79 8k 1.00 22.01 1.00 22.01

100k 1.00 2.74 13.49 14k 1.00 21.96 1.00 21.96

500k 1.00 2.48 48.93 49k 1.00 21.88 1.00 21.88

Size Replication Ratio (R) = 1%

&0 Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency | Search Efficiency
(SR) (ST) (QH) QM) (QE1) (QE2) (SE1) (SE2)

10k 0.92 4.92 2.44 244.48 1.00 27.42 0.92 25.23

50k 0.99 2.96 4.85 485.15 1.00 27.21 0.99 26.94

100k 1.00 2.46 6.52 652.03 1.00 26.98 1.00 26.98

500k 1.00 1.93 12.96 1296.59 1.00 26.81 1.00 26.81

BLE 3a

Performance of Flooding in Bimodal Topologies
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