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Abstract: 
The effect of thermal radiation on boundary layer flow with temperature dependent viscosity and thermal 

conductivity due to a stretching sheet in porous media is investigated. The Rosseland diffusion approximat ion is used to 

describe the radiative heat flux in the energy equation. The sheet is being stretched linearly in the presence of a uniform 

transverse magnetic field and the flow is governed by the second –order viscoelastic fluid. The partial differential equations 

governing the flow and heat transfer characteristics are converted into ordinary differential equations by similarity 

transformations and solved numerically by fourth-order Runge-Kutta shooting method. The effects of various parameters on 

the velocity and temperature profiles as well as the skin-frict ion coefficient and Nusselt number has been shown graphically 

and in tabulated form and discussed in detail.  
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1.  Introduction  

The study of the flow and heat transfer created by a moving surface is relevant to several applications in the fields of 

metallurgy and chemical engineering, polymer processing, electro-chemistry, MHD power generators, flight magneto hydro 

dynamics as well as in the field of planetary magneto spheres, aeronautics and chemical engineering. Sakiad is [1] was the 

first to study the boundary layer flow due to a moving wall in flu id at rest. The study of flow over a stretching surface has 

generated much interest in recent years in view of its numerous industrial applicat ions such as extension of polymer sheets, 

glass blowing, rolling and manufacturing plastic films and artificial fibers. The pioneer work on the boundary layer flows 

over stationary and continuously moving surfaces was initially done by Blasius [2] and Crane [3].  A li [4]  carried out a stu dy 

for a stretching surface subject to suction or injection for uniform and variable surface temperatures. Rajgopal et al  [5] , 

Dandapat and Gupta [6],  Shit  [7]  and Reddaiah and Rao [8]  extensively studied on various aspects of boundary layer flow 

problems over a stretching sheet. 

 In cooling processes, the effect of thermal radiat ion is also an important factor in non -isothermal systems. Hady and 

Mohamed [9] studied the MHD mixed convection with thermal radiation in laminar boundary layer flow over a semi -infin ite 

flat plate embedded in porous media. Mansour [10] studied the effects of radiation and forced convection on the flow over a 

flat plate submersed in a porous medium of a variable viscosity. Mohammadein et .al [11] studied the effects of radiation 

with both first and second-order resistance’s due to the solid matrix on some natural convection flows in fluid -saturated 

porous media. The effect of thermal rad iation on mixed convection from horizontal surfaces in saturated porous media was 

investigated by Bakier and Gorla [12]. Prasad et al [13]) studied the radiation and mass transfer effects on unsteady MHD 

free convection flow past a vertical porous plate embedded in porous medium: a numerical study. Anjali Devi and Kayalvizhi 

[14] presented analytical solution of MHD flow with radiation over a stretching sheet embedded in a porous medium.  

 

       In most of the studies of this type of problems, the viscosity and thermal conductivity of the fluid were assumed to be 

constant. However, it is known that the physical properties can changed sufficiently with temperature and when the effects of 

variable viscosity and thermal conductivity are taken in to account, the flow characteristics are significantly changed 

compared to the constant property. Hassanien et al [15] revealed that the fluid v iscosity and thermal conductivity might 

function of temperatures as well as the flu id is considering. Recently  Sharma and Hazarika [16] studies the effects of variable 

viscosity and thermal conductivity on heat and mass transfer flow along a vertical p late in the presence of a magnetic field.  

 Also, most of the practical situations demand for fluids that are non-Newtonian in nature which are mainly used in many 

industrial and engineering applicat ions. It is well known that a number of fluids such as molten plas tic, polymeric liqu id, food 

stuffs etc exhibit non-Newtonian character. 
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In the present work, thermal radiat ion effects on heat transfer of second grade fluid  over a stretching sheet through 

porous medium with temperature dependent viscosity and thermal conductivity is investigated. The governing equations are 

transformed by using similarity transformation and the resultant dimensionless equations are solved numerically using the 

Runge-Kutta fourth order method with shooting technique. The effects of various governing parameters on the velocity, 

temperature, skin-frict ion coefficient and Nusselt number are shown in figures and tables and analyzed in detail. Numerical 

results are presented for velocity and temperature profiles for different parameters of the problem. 

2. Mathematical Formulation 

We consider the two-dimensional laminar boundary layer flow of viscous, incompressible, electrically conducting 

and radiating second grade fluid with temperature dependent viscosity and thermal conductivity past a semi -infin ite 

stretching sheet coinciding with the plane 0y   embedded in a uniform porous medium. A uniform magnetic field of 

strength 
0B  is applied in the direction perpendicular to the plate. The transverse applied magnetic field and magnetic 

Reynolds number are assumed to be very small, so that the induced magnetic field is negligible. Keeping the origin fixed, 

two equal and opposite forces are applied along the x - axis, so that the sheet is stretched with a velocity proportional to the 

distance from the fixed origin. Under the above assumptions, the basic boundary layer equations governing the flow and heat 

transfer of second grade fluid due to the stretching sheet are given by the fo llowing equations: 

 

The equation of continuity: 

 

0
u v

x y
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Thermal energy conservation: 
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Along with the boundary conditions, 

   
,wu U cx           0,v 

    
                

wT T             at      0y 
                                      

 
0,u                       0,v                     T T        as      y 

                       (4)         

Where u   and v  are the flow velocity components along  x-   and   y - directions respectively, 
0B  is the applied magnetic 

field,      and  k    are the constant viscosity and  constant thermal conductivity  of the free stream  of the fluid 

respectively. T is the temperature of the flu id.    and k  are the coefficient of variable v iscosity and variable thermal 

conductivity respectively of the flu id which are considered to vary as a function of temperature. pC  is the specific heat at 

constant pressure  and 0k  is the coefficient of visco-elastricity.   is the electrical conductivity. c  is the constant stretching 

rate. T  and    are the free stream temperature and density.  K    is the permeability of the porous medium.   rq   is the 

radiation heat flux.  

Flowing Lai and Kulacki [17]  We assume 
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Where   a ,  ,  rT ,   eT    are constants  and their values depend on the reference state and thermal properties of the flu id  i.e  

   and   . In general 0a   for liquids and  0a   for gases ( the viscosity and thermal conductivity of liquid/gas 

usually decrease/increase with increasing temperature).  

By assuming Rossenland approximation for radiat ion, the radiative heat flux  
rq  is given by   

 

* 4

*

4
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r
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K y

 
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                   (7) 

Where   
*   and  

*K    are the Stefan-Bolzman constant and the mean absorption coefficient respectively. We assume that 

the temperature differences within the flow are sufficiently small such that  
4T  may be expressed as a linear function of the 

temperature as shown in Chamakha [18]. Expanding  
4T  in a Taylor series about T

 and neglecting higher order terms we 

obtain  

  
4 3 44 3T T T T                     (8)  

Using  (7) and  (8) ,   we obtain as  
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3.   Method of Solution 

The mathematical analysis of the problem is simplified by introducing the following dimensionless coordinates in terms of 

similarity variab le   and the similarity function f  as  
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
                       (10) 

Where prime denotes the differentiation with respect to   and    is the dimensionless temperature.  

Clearly the continuity equation (1) is satisfied by  u  and  v   defined in equation (10). Substituting equation (10) in 

equations (2) - (3) gives  the following equations 
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And 
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The transformed boundary conditions are reduce to  

  1,f       0,f       1,     at  0,            (13) 

  0,f       0,f       0,     as  ,           (14) 

Where prime denotes differentiation with respect to     only  and  
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r    is the dimensionless parameter characterizing the influence of v iscosity , where   
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For engineering purpose, one is usually less interested in the shape of the velocity and  temperature profiles then in the value 

of the skin-friction, heat transfer. The expression for the local skin-frict ion coefficient  fC   and the local Nusselt number  

Nu  defined by: 
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3. Numerical Results and Discussion 
The system of differential equations (11) and (12) governed by boundary conditions (13) and (14) are solved 

numerically by applying an efficient numerical technique based on the fourth order Runge-Kutta shooting method and an 

iterative method. It  is experienced that the convergence of the iteration process is quite rapid. The numerical computations 

have been carried out for various values of radiation parameter R ,  visco-elastic parameter 1K ,  Eckert number Ec , Prandtl 

number Pr , porosity parameter K , Magnetic parameter M and  the dimensionless viscosity parameter r . In order to 

illustrate the results graphically, the numerical values of dimensionless velocity  f   and dimensionless temperature      

are plotted in  Figures 1 – 14.  
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Figure 1.  Variation of  f   with   for di fferent values of  R  

 

    

Figure 2.  Variation of  f   with   for di fferent values of 
1K  

 

   

Figure 3.  Variation of  f   with   for di fferent values of Ec  

 

   
Figure 4.  Variation of  f   with   for di fferent values of  Pr  
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Figure 5.  Variation of  f   with   for di fferent values of  K  

 

 

Figure 6.  Variation of  f   with   for di fferent values of  M  

 

 

Figure 7.  Variation of  f   with   for di fferent values of  r  

  

 

Figure 8. Variation of     with   for different values of R  
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Figure 9.  Variation of     with   for di fferent values of 
1K  

 

 

 

Figure 10. Variation of     with   for di fferent values of  Ec  

 

Figure 11. Variation of     with   for di fferent values of Pr  

 

Figure 12. Variation of     with   for di fferent values of  K  
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Figure 13. Variation of     with   for di fferent values of  M  

 

 

Figure 14. Variation of     with   for di fferent values of  r  
 

For various values of the radiation parameter R, the velocity profiles are plotted in Fig.1. It can be seen that as R 

increases, the velocity decreases. Fig.2. shows the effect of viscoelastic parameter 
1K  on the velocity profiles. It is seen that 

the velocity increases as the viscoelastic parameter increases. The effect of Eckart number Ec  on the velocity field is shown 

in Fig.3. It is noticed that the velocity profiles increases with the increase of Ekcart number. The velocity profiles for 

different values of Prandtl number Pr  are illustrated in Fig.4. It is clear that increasing values of Pr  results in increasing 

velocity.  . Fig.5. shows the effect of permeability parameter K on the velocity profiles. It is seen that the velocity decreases 

as the permeability parameter increases. For various values of the magnetic parameter M , the velocity profiles are plotted in 

Fig.6. It can be seen that as M  increases, the velocity increases. The effect of dimensionless viscosity parameter r  on the 

velocity profiles is shown in Fig.7. It is found that the velocity slightly decreases with an increase  in r . The effect of 

radiation parameter R on the temperature profiles is shown in Fig.8. It is observed that the temperature  increases as R 

increases. Fig.9. shows the temperature profiles for different values of viscoelastic parameter 
1K . It is obvious that an 

increase in 
1K  results in decreasing temperature within the boundary layer. The effect of Eckart number Ec  on the 

temperature profiles is depicted in Fig.10. It can be seen that an increase in Ec  results in increase of the thermal boundary 

layer. Figs 11 and 12 noticed that the dimensionless temperature      decreases with the increase of the Prandtl number Pr 

and increases with the increasing values of porosity parameter K . It is interesting to note from Fig. 11 that the increase of 

Prandtl number Pr means decrease of thermal conductivity . The effect of the magnetic parameter M on temperature 

distribution shown in Fig. 13. From this figure we conclude that the temperature decreases with the increase of the magnetic 

parameter  M . It may also observed from Fig. 14 that the effect of thermal rad iation is to enhance the temperature with 

increase in the fluid v iscosity parameter r  .
 
It is interesting to note that in the presence of thermal radiation, the effect of 

viscosity parameter  r   causes marg inal significance.  
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        The important characteristics in the present study are the local skin-friction coefficient 
fC  and the local rate of heat 

transfer at the sheet (Nusselt number Nu) defined in equations in (16) and (17). 

Table-1.  Numerical   values of the local skin-friction:        

 
 12 0 ,w r

f

r

C K f
c
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 

 
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 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R  K  
1K  

Pr
 r  Ec  0.0M   0.2M   0.4M   

0.5 2 1 2.7 -10 .05 1.074144 1.057201 1.039990 

2.5 1.111263 1.094620 1.077719 

3.5 1.116569 1.099968 1.083112 

0.5 0.5 1 2.7 -10 .05 0.951911 0.932854 0.913423 

1.5 1.034942 1.017369 0.999501 

2.5 1.112005 1.095630 1.079014 

0.5 2 -6 2.7 -10 

 

 

.05 -6.855943 -6.506797 -6.152434 

-4 -4.131017 -3.869648 -3.603017 

-2 -1.644921 -1.473744 -1.297443 

0.5 2 1 1.5 -10 .05 1.101120 1.084394 1.067409 

2.5 1.078689 1.061782 1.044609 

3.5 1.055836 1.038748 1.021390 

0.5 2 1 2.7 -9 .05 1.088707 1.071406 1.053830 

-5 1.197815 1.177733 1.157298 

-2 1.486126 1.457645 1.428535 

0.5 2 1 2.7 -10 .05 1.074144 1.057201 1.039990 

0.15 1.064218 1.047599 1.030719 

0.25 1.054411 1.038109 1.021553 
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Table- 2.   Numerical values of local Nusselt number :        0Nu  
 

 

 

Tables 1 and 2 exh ibit the numerical values to the local skin-friction 
fC and local Nusselt number Nu  respectively. 

It has been observed empirically that for any particular values of R , K , Pr , r   and  Ec  the local skin-frict ion decreases 

with the increase in the magnetic parameter M . The skin friction is also decreases with the increase in Ec  and the Prandtl 

number Pr . But the reversal trend is observed in the presence of fluid viscoelasticity 
1K , K , r  and the thermal radiat ion 

R . It is worthwhile to mention here that the rate of heat transfer decreases with the increasing values of R , K , r  and 

Ec . However , the heat transfer rate increases with the increasing values of  Prandtl number Pr  and the viscoelastic 

parameter 
1K . 

 

 

R  K  
1K  

Pr
 r  Ec   0Nu    

0.0M   0.2M   0.4M   

0.5 2 1 2.7 -10 .05 0.970627 0.971503 0.972407 

2.5 0.809208 0.809521 0.809844 

3.5 0.786403 0.786638 0.786882 

0.5 0.5 1 2.7 -10 .05 0.977029 0.978125 0.979260 

1.5 0.972603 0.973544 0.974515 

2.5 0.968787 0.969606 0.970449 

0.5 2 -6 2.7 -10 .05 1.003040 1.017594 1.032605 

-4 1.033991 1.046184 1.058830 

-2 1.061449 1.071274 1.081550 

0.5 2 1 1.5 -10 .05 0.853002 0.853466 0.853944 

2.5 0.950695 0.951501 0.952333 

3.5 1.051387 1.052544 1.053736 

0.5 2 1 2.7 -9 .05 0.970361 0.971254 0.972175 

-5 0.968634 0.969653 0.970706 

-2 0.966323 0.967656 0.969040 

0.5 2 1 2.7 -10 .05 0.970627 0.971503 0.972407 

0.15 0.959883 0.960266 0.960672 

0.25 0.950152 0.950011 0.949887 
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4.  Conclusions  

 In this paper a theoretical analysis has been done to study the effect of radiation on flow of Second grade fluid over 

a Stretching sheet through porous medium with temperature dependent viscosity and thermal conductivity . Some conclusions 

of the study are as below: 
 

a. Velocity increases with the increase in magnetic parameter M , Eckart number Ec , Prandtl number Pr  and       

viscoelastic parameter 
1K . 

b. Velocity decreases when radiation parameter R , viscosity parameter r  and porosity parameter K  increases. 

c. Skin frict ion decreases when magnetic field parameter M , Ec  and  Prandtl  number Pr increases. 

d. Skin frict ion increases when radiation parameter R , visco elastic parameter 
1K  and viscosity parameter r           

increases. 

e. Temperature increases when radiation parameter R  is increased. But temperature decreases  when Prandtl number      

Pr  and visco elastic parameter 
1K  increases. 

f. Nusselt number increases when Prandtl number Pr  and visco elastic parameter 
1K  increases. 
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