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Abstract: This paper is a study of the Fundamental Theorem of A lgebra which states that every polynomial equation of 

degree n has exactly n zeroes.  It gives a historical account of the theorem in different periods; by different mathemat icians it 

also includes the contribution of different countries. In addition to this I present different proofs of Fundamental Theorem of 

Algebra by using different techniques which is actually the main theme behind the paper. 
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1. Introduction 
When we speak of the early history of algebra, first of all it is necessary to consider the meaning of the term. If by 

algebra we mean the science which allows us to solve the equation ax
2
 + bx + c = 0, expressed in these symbols, then the 

history begins in the 17
th

 Century ; if we remove the restrictions as to these particular signs and allow for other and less 

convenient symbols. we might properly begins the history in the 3
rd

 century ; if we allow for the solution of the above equation 

by geometric methods, without algebraic symbols of any kind, we might say that the algebra begins with the A lexandrian 

School or a little earlier; and if we say we should class as algebra any problem that we should now solve by algebra ( even 

through it was at first solved by mere guessing or by some cumbersome arithmet ic process), then the science was known abo ut 

I800 B.C,, and probably still earlier. It is first proposed to give a brief survey of the development of algebra, recalling t he 

names of those who helped to set the problems that were later solved by the aid of equation, as well as those who assisted in  

establishing the science itself. These names have been mentioned in Volume 1 and some of them will be referred to when we 

consider the development of the special topics of algebra and their application to the solution of the elementary problems. I t 

should be borne in mind that most ancient writers outside Greece included in their mathematics works a wide range of 

subjects. Ahmes (c.1550 B.C.), for example, combines his algebra with arithmetic and mensuration, and even shows some 

evidence that trigonometry was making a feeble start. There was no distinct treatise on algebra before the time of Diophantus 

(c.275). There are only four Hindu writers on algebra whose are particularly noteworthy. These are Aryabhata, whose 

Aryabha-tiyam(c.510) included problems in series, permutation , and linear and quadratic equations; Brahmagupta, whose 

Brahmasid-dhanta(c.628) contains a satisfactory rule for the solving the quadratic, and whose problems included the subjects 

treated by Aryabhata : Mahavira  whose Ganita -Sari Sangraha (c.850) contains a large number of p roblems involving series, 

radicals, and equations; and Bhaskara, whose Bija Ganita (c.1150) contains nine chapters and extended the work through 

quadratic equations. 
 

Algebra in the modern sense can hardly be said to have existed in the golden age of Greek mathemat ics. The Greeks 

of the classical period could solve many algebraic problems of considerable difficulty, but the solutions were all geometric.  

Hippocrates (c.460 B.C.), for example, assumed a construction which is equivalent to solving the equation 

                         
22

2

3
aaxx  . 

With Diophantus (c.275) there first enters an algebraic symbolis m worthy of the name, and also a series of purely 

algebraic problems treated by analytic methods. Many of his equations being indeterminate, equation of this type are often 

called Diophantine Equations. His was the first work devoted chiefly to algebra, and on his account he is often, and with mus t 

justice, called the father of the science. The algebraists of special prominence among the Arabs and Persians were Mohammed 

ibn Musa, al- Khowarizmi, whose al- jabr w‟al muqabalah(c.825) gave the name to the science and contained the first 

systematic treatment of the general subject as distinct from the theory of numbers; Almahani (c.860), whose name will be 

mentioned in connection with the cubic; Abu kamil (c.900), who drew extensively from al - khawarizmi and from whom 

Fibonacci (1202) drew in turn;  al-Karkh i(c.1020), whose Fakhri contains various problems which still form part of the general 

stock material of algebra; and Omar Khanyyam (c.1100), whose algebra was the best that the Persian writers produced. 
 

Most of the medieval Western scholars who helped in the progress of algebra were translators from the Arabic. 

Among these were Johannes Hispalensis (c.1140), who may have translated al-Khowarizmi‟s algebra; Gherardo of Cremona 

(c.1150), to whom is also attributed a translation of the same work; Adelard of Bath (c.1120), who probably translated an 

asronomical work of al-Khowarizmi, and who certainly helped to make this writer Known; and Robert of Chester, whose 

translation of al-Khoarizmi‟s algebra is now availab le in English.  
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The first epoch-making algebra to appear in print was the Ars Magna of Cardan (1545). This was devoted primarily 

to the solutions of algebraic equations. It contained the solutions of the cubic and biquadratic equations, made use of complex 

numbers, and in general may be said to have been the first step towards modern algebra.The next g reat work on algebra to 

appear in print was the General Trattato of Tartaglia (1556-1560), although his side of the controversy with Cardan over the 

solution of the cubic equation had already been given in his qvesitised inventioni diverse (1546). The first noteworthy attempt 

to write algebra in England was made by Robert Recorde, who Whetstone of Witte (1557) was an excellent textbook for its 

first time. The next important contribution was Masterson‟s incomplete treatise of 1592 -1595, but the work was not up to 

standard set by Recorde. The first Italian textbook to bear the title of algebra was Bombelli‟s work of 1572.  In this book t he 

material is arranged with some attention to the teaching of the subject. 

 

By this time elementary algebra was fairly well perfected and it only remained to develop a good symbolism. Every 

real polynomial can be expressed as the product of real linear and real quadratic factors.Early  studies  of  equations  by  al-

Khwarizmi  (c 800)  only  allowed  positive  real  roots  and  the Fundamental Theorem of Algebra  was  not  relevant.  Cardan  

was  the  first  to realise  that  one  could  work  with  quantities  more  general  than the real numbers. This discovery was 

made  in  the  course  of  studying  a formula  which  gave  the  roots  of  a  cubic equation.  The formula when applied to the 

equation x3 = 15x + 4 gave an answer involving √-121 yet   Cardan   knew   that   the equation had   x = 4   as a solution. He 

was able to manipulate with his 'complex numbers' to obtain the right answer yet he in no way unde rstood his own 

mathematics. Bombelli, in his Algebra, published in 1572, was to produce a proper set of rules for manipulating these 

„complex numbers'.  Descartes in 1637  says that one can 'imagine' for  every equation  of  degree  n, n  roots  but  these  

imagined roots do not correspond to any real quantity Viète  gave  equations  of  degree  n  with  n  roots but  the  first claim  

that  there  are  always  n solutions  was  made  by  a  Flemish  mathemat ician  Albert  Girard in  1629 in  L'invention en algebre 

However  he  does  not assert  that  solutions  are  of  the  form   a + bi,  a, b real,  so  allows  the  possibility  that  solutions 

come  from  a  larger  number  field  than  C.  In fact  this  was  to  become the  whole  problem  of the  Fundamental Theorem 

of Algebra  for  many  years  since  mathematicians accepted   Albert  Girard's  assertion  as self-evident.  They  believed  that  

a polynomial equation  of degree  n  must  have  n  roots,  the problem  was,  they  believed,  to  show  that these roots  were  

of  the  form  a + bi,  a,  b real Now  Harriot  knew  that  a  polynomial  which vanishes   at  t  has  a  root  x - t  but  this  did  

not become well  known until  stated  by  Descartes in 1637  in  La geometrie,  so  Albert  Girard  did  not have  much  of  the  

background  to  understand  the problem  properly.  

  

A  'proof'  that  the  Fundamental Theorem of A lgebra  was  false  was  given  by Leibniz  in  1702  when  he  asserted  

that  x
4
 + t

4
 could  never  be  written  as  a  product  of  two  real  quadratic  factors.  His  mistake  came  in  not realizing  that  

√i  could  be  written  in  the  form    a + bi,  a,  b real.  Euler,  in  a  1742 correspondence  with Nico laus(II)  Bernoulli  and  

Goldbach,  showed that  the  Leibniz  counter  example  was  false.  D'Alembert  in  1746  made  the first serious attempt at  a  

proof  of  the  Fundamental Theorem of A lgebra  .  For a polynomial f(x) he takes a real   b, c so that       f (b) = c. Now he 

shows that there are complex numbers z1 and w1    so that  
 

|z1| < |c|, |w1| < |c|. 
 

He then iterates the process to converge on a zero of f.  His proof has several weaknesses . Firstly,  he  uses  a  lemma  

without  proof  which was  proved  in  1851  by  Puiseau,  but  whose proof  uses  the  Fundamental Theorem of Algebra    

Secondly,  he  did  not   have  the necessary knowledge to use a compactness argument to give the final convergence. Despite  

this,  the  ideas  in  this  proof  are  important. Euler  was  soon  able  to  prove  that  every  real polynomial of degree n, n ≤ 6  

had exact ly n complex  roots.  In  1749  he  attempted  a  proof  of  the  general  case,  so  he  tried  to  prove  the Fundamental 

Theorem of A lgebra  fo r  Real  Po lynomials: Every polynomial of the nth degree with real coefficients has precisely n zeros in 

C. His  proof  in Recherches  sur  les racines imaginaires  des  équations is based on decompos ing  a  monic  polynomial  of  

degree 2
n
 into  the  product  of  two  monic  polynomials of degree  m = 2

n-1
. Then since an arbitrary polynomial  can  be  

converted  to  a  monic polynomial  by  multip lying  by  ax
k
  for  some k the  theorem  would  fo llow  by  iterating the 

decomposition.  Now  Euler  knew  a  fact  which went  back  to  Cardan  in  Ars  Magna,  or  earlier, that  a  transformation  

could  be  applied  to remove the second largest degree term of a polynomial.  Hence  he  assumed  that 

  

x
2m

 + Ax
2m-2

 + Bx
2m-3

 +. . . = (x
m

 + tx
m-1

 + gx
m-2

  

 

                                             + . . .)(x
m

 - tx
m-1

 + hx
m-2

 + . . .)  
 

and  then  multiplied  up  and compared coefficients.  This  Euler  claimed  led  to  g,  h, ... being  rational functions  of  A, B, 

..., t.  A ll  this was  carried  out  in  detail  fo r n = 4,  but the general  case  is  only  a  sketch.  In  1772  Lagrange  raised  

objections  to  Euler's proof.  He  objected  that  Euler's  rational  functions  could  lead  to  0/0.  Lagrange  used  his 

knowledge  of  permutations  of  roots  to  fill  all the  gaps  in  Euler's  proof  except  that  he  was still  assuming  that   the  
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polynomial  equation of degree  n  must  have  n  roots  of  some  kind  so  he  could  work  with  them  and  deduce  

properties,  like  eventually  that  they  had  the form  a + bi,  a,  b real.  Laplace,  in  1795,  tried  to  prove  the  Fundamental 

Theorem of A lgebra    using a completely d ifferent approach using the discriminant  of  a  polynomial.  His  proof was very  

elegant  and  its only  'problem' was that  again  the  existence  of  roots  was  assumed Gauss  is  usually  credited  with  the  

first  proof  of the  Fundamental Theorem of Algebra  .  In  his  doctoral  thesis  of  1799  he presented  his  first  proof  and  

also  his  objections to  the  other  proofs.  He  is  undoubtedly  the  first to  spot  the  fundamental  flaw  in  the  earlier proofs,  

to which we have referred many times above,  namely  the fact that they were assuming the existence of roots and then trying 

to deduce properties  of  them.  Of  Euler's  proof  Gauss  says  ... if one carries out operations with these impossible  roots,  as  

though  they  really  existed, and  says  for  example,  the  sum  of  all roots of the  equation  
 

                             x
m

+ax
m-1

 + bx
m-2

 + . . . = 0  
 

 is  equal to –a  even  though some of them may be impossible  (which  really  means: even  if  some are  non -existent  and  

therefore  missing),  then  I can  only  say  that  I  thoroughly  disapprove  of this  type  of  argument.  Gauss  himself does not 

claim  to  give  the  first proper  proof.  He  merely  calls  his  proof  new  but says,  for  example  of  d'A lembert's  proof,  that 

despite  his  objections a rigorous  proof  could  be constructed on the same basis. Gauss's  proof  of  1799  is  topological  in  

nature and  has  some  rather  serious  gaps.  It  does  not meet  our  present  day  standards  required  for  a rigorous  proof. In  

1814  the  Swiss  accountant  Jean  Robert Argand  published  a  proof  of  the  Fundamental Theorem of Algebra    which may  

be  the  simplest  of  all   the  proofs.  His proof is based on d'Alembert's  1746  idea. Argand  had  already  sketched  the  idea  

in  a paper  published  two  years  earlier  Essai  sur  une manière  de  représenter  les  quantitiés   imaginaires  dans  les 

constructions  géometriques. In this paper he interpreted i as a rotation of the plane  through  90°  so  giving  rise  to  the  

Argand plane or Argand diagram as a geometrical representation of complex numbers. Now in the later paper Réflexions sur 

la nouvelle théorie d'analyse  Argand simplifies d'Alembert's idea using a general theorem on the existence of a minimum  of  

a  continuous  function.  

 

In  1820  Cauchy  was  to  devote  a  whole  chapter of  Cours  d'analyse  to  Argand's  proof  (although it  will  come  

as  no  surprise  to  anyone  who  has studied  Cauchy's  work  to  learn  that  he  fails  to mention Argand !)  This  proof  only  

fails  to  be rigorous  because  the  general  concept  of   a  lower  bound  had  not  been  developed  at  that time.  The  Argand  

proof  was  to  attain  fame when  it  was  given  by  Chrystal  in  his  Algebra textbook  in  1886.  Chrystal's  book  was  very 

influential.Two  years  after  Argand's  proof  appeared  Gauss published  in  1816  a  second  proof  of  the  Fundamental 

Theorem of A lgebra  . Gauss uses Euler's approach but instead of operating  with  roots  which  may  not  exist,  Gauss  

operates  with  indeterminates.  This proof is complete and correct. A  third  proof  by  Gauss  also  in  1816  is,  like the  first,  

topological  in  nature.  Gauss  introduced in 1831 the term 'complex number'. The term „conjugate‟ had been introduced by 

Cauchy in 1821. Gauss's  criticis ms  of the  Lagrange-Laplace proofs  did  not  seem  to  find  immediate  favour  in France.  

Lagrange's 1808 2
nd

  Edit ion  of  his treatise  on  equations  makes no mention of Gauss's  new  proof  or  criticisms.  Even  the  

1828 Edition,  ed ited  by Poinsot, still expresses complete  satisfaction  with  the  Lagrange-  Laplace  proofs  and  no  mention  

of  the  Gauss criticis ms. In  1849  (on  the  50th  anniversary  of  h is  first proof!) Gauss  produced  the  first  proof that a 

polynomial  equation  of  degree  n  with  complex coefficients  has  n  complex roots.  The  proof  is similar  to  the  fir st  

proof  given  by  Gauss. However  litt le  since  it  is straightforward  to  deduce  the  result  for  complex coefficients  from  the  

result  about  polynomials with  real  coefficients. 

  

It  is  worth  noting  that  despite  Gauss's  insistence  that  one  could  not  assume  the existence  of  roots  which  

were  then  to  be proved  reals  he  did  believe,  as  did  everyone  at that  time,  that  there  existed  a  whole  hierarchy of  

imaginary  quantities of which complex numbers  were  the  simplest.  Gauss called them a shadow  of  shadows. t  was  in  

searching  for  such  generalisations  of the  complex  numbers  that  Hamilton  discovered the  quaternions  around  1843,  but  

of   course    the  quaternions  are  not  a  co mmutative  system. The  first  proof that the only commutative algebraic field 

containing R was given by Weierstrass  in  his  lectures  of  1863.  It   was published  in  Hankel's book Theorie der complexen  

Zahlensysteme.Of  course  the  proofs  described  above  all become  valid  once  one  has  the modern result that  there  is   a 

splitting  field for every polynomial.  Frobenius,  at  the celebrations in Basle  for  the  bicentenary  of  Euler's birth said Euler  

gave  the  most  algebraic  of  the  proofs  of the  existence  of  the  roots  of  an  equation,  the one  which  is  based  on  the  

proposition  that every  real  equation  of  odd  degree  has a real root.  I  regard it   as  unjust  to  ascribe  this  proof exclusively 

to Gauss, who merely added the finishing  touches. The  Argand  proof  is  only  an  existence  proof and  it  does  not  in  any  

way  allow  the  roots  to be  constructed.  Weierstrass  noted  in  1859  made a  start   towards   a   constructive   proof   but    

it   was  not  until  1940  that  a  constructive  variant  of  the  Argand  proof  was  given  by  Hellmuth Kneser.  This  proof  

was  further  simplified  in 1981  by  Martin  Kneser,  Hellmuth  Kneser's  son. In  this dissertation we shall use various 

analytical  approaches  to  prove  the  theorem All   proofs   below   involve   some   analysis,   at the  very   least   the   

concept   of   continuity   of  real  or  complex   functions.   Some   also   use  differentiab le  or   even   analytic   functions.   
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This  fact   has  led some  to  remark  that  the  Fundamental  Theorem of  Algebra  is  neither  fundamental,   nor   a  the orem  

of  algebra. 

Some  proofs  of  the  theorem  only  prove  that any  non-constant  polynomial  with real coefficients  has  some  complex  

root.  This  is enough   to   establish   the  theorem  in  the  general  case  because,   given   a   non -constant  polynomial   p(z)   

with  complex   coefficients,   the    polynomial 
 

)()()( zpzpzq   
  

has   only   real   coefficients   and,   if   z   is  a  zero   of  q(z),   then   either   z   or   its   conjugate  is   a    root   of  p(z). 

 

Different Proofs of the theorem: Statement of Fundamental theorem of algebra Every polynomial equation of degree n has 

exactly n zeroes  An   expression   of   the    form 

P(x) = an x
n

  + an-1x
n-1

 + 
 .   .   . 

+ a1 x + a0  

 Where   a0,  a1  .  .  . an-1, an   ≠ 0 
 

are real or complex  numbers  and  p(x)  is called  a   polynomial  equation of  degree  n and  the  equation  p(x) = 0  is  called  

a  polynomial  equation of  degree  n .  

By  a  zero  o f  the  polynomial  x  or  a  root  of  the equation        x =  0 , we  mean  a  value  of  p(x)   such   that  p(x) = 0. 
 

First proof:  For the proof of  the Theorem we must know the following Theorem known as Liouville‟s Theorem.  
 

STATEMENT:  If  a  function  f(z)  is  analytic  for  all  fin ite values  of  z  and  is  bounded, then  f(z)  is constant. “or”  
 

If   f   is   regular   in   whole   z-p lane   and    if  │f(z)│< K  fo r  all  z  then    f(z)  is  constant. 
 

PROOF: Let  a  &  b  be  arb itrary d istinct  points  in  z-p lane  and  let  C  be  a  large  circle  with  center z = 0  and  rad ius  R  

such  that  C  encloses  a  &  b. The   equation of C is 

 

│z│=  R  so that  z  = R e
iө

 

dz  = ί R e
iө 

│dz│ = R dө 

f(z)  is  bounded  for  all z    │f(z) │   m  for all  z  where       m > 0  

By Cauchy integral formula  
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    f(a) –f(b)  =  0 

 

“or”    f(a) =  f(b) 

Showing there by f(z) is constant 

   [ c dz = circumference of circle, RC 2  ] 

The liouville‟s Theorem is one of the most outstanding  Theorems  in  Complex  Analysis  which  has no counter  part  in  

Real  Analysis.  In  fact  the Theorem does  not  hold  for  real  function. 

 

2. Proof Of The Fundamental Theorem Of The Algebra 
We  shall  prove it   by  contradiction  suppose   p(z) ≠ 0    for any value of z. Then  

f(z)    =     
n

n zazaazp 


...

1

)(

1

10

 

f(z)   =    














asz

a
z

a

z

a

z

a
z nnnn

n

0

...

1

2

2

1

10

   

  for every 0  there exists a 0  such    that  

│f(z) │<   when │z│<   

Since   f(z)   is  continuous  in  the  bounded  closed   domain  │z│    therefore f(z)  is  bounded  in  the    closed  

domain  │z│   ,   so  there  exists  a  positive  number  k  such  that  

│f(z) │< k  for │z│   

If      M  =  Max(  , k) ,  Then   we  have 

│f(z) │ = │
)(

1

zp
 │ < M for every z 

 

Hence  by  Liouville‟s  Theorem  f(z)  is  constant. This   gives  a  contradiction.  Since p(z)  is  not constant   for  n =1, 2, 3,   

and    an ≠ 0 Thus p(z)  must   be   zero   for   at   least   one   variable   of   z. 

i.e. p(z) = 0  must  have  at  least  one  root  say  1  then  we  have  p( 1 ) = 0 

Now               p(z)  =  p(z) – p( 1 ) 

 

 i.e .        P(z)  =  (a0+ a1z + a2 z
2
+ .  .  .+ anz

n
)  

  – ( a0 + a1 1 + a2

2

1  + .  .  .+an

n

1 ) 

 “or”    p(z) =a1(z - 1 ) +a2 (z
2
 - 

2

1 ) +  .  .  .+ an (z
n 

- 
n

1 ) 

i.e.   P(z) =(z- 1 ) p1(z) 

where  p1(z)  is  a  polynomial of  degree  n-1.  Again  p1(z) = 0  must have at least  one  root  say  2 ( 2  may be equal 

to
1 ) proceeding  as  above  we  have  

P(z)  = (z - 1 ) (z - 2 )p2(z) 

 

 where   p2(z)  is  a   polynomial   of degree n – 2  continuing  in  this  way  we  see  that  p(z) = 0  has  exactly   n  roots.   
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Second proof : For the second proof of the theorem we must know the following theorem known   as  Rouche‟s  Theorem 
 

Statement: If  f(z) and g(z) are analytic inside and on   a simple closed curve  C and│g(z) │< │f(z) │  on C ,  

Then  f(z) and f(z) + g(z) both have the same number of zeros inside C 
 

Proof : Suppose  f(z)  and  g(z)  are  analytic  inside  and on   a   simple   closed   curve   C   and 
 

│g(z) │<  │f(z) │ on C 
 

Firstly we shall prove that neither f(z) nor  f(z) + g (z)  has  zero  on  C 

If f(z) has a zero at z = a on C then f(a) = 0  
 

But  │g(z) │<│f(z) │on C 
 

which  is  absurd Again     if     f(z) +g(z)     has  a   zero    at    z = a   on  C 

Then    f(a) + g(a)  =  0   so  that 

 

                                  f(a)  =  - g(a) 

                                         “or”                  

                               

                             │g(a) │ = │f(a) │ 

 

Again  we  get  a   contradiction ,   Thus  neither f(z)  nor   f(z)  + g(z)  has  a  zero  on  C 

Let  N1  and  N2  be  number  of  the  zeros of   f   and   f + g     respectively  inside  C.  

we know that f and f + g  both are analytic   within  and   on   C  and  have  no  poles  inside  C .   

Therefore, by usual formula. 
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           subtracting  we  get 
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   (I)   

 

Taking 
f

g
    so that  g =   f  

│g│ < │f│ │

f

g
│ < 1    │ │ < 1 

Also              
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

 ''
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Using in  (I)  we get 

 

dz
i

NN
c

 





 12

1 '

12
 

 

  dz
i

NN
c

1'

12 1
2

1 
  


 (II) 

Since we have seen that 1  and so binomial expansion of   1
1


  is possible and binomial expansion 

thus obtained is uniformly convergent and hence term by term integration is permissible, Hence  

 
   dzdz

cc

...11 32'1'  
 

 

 

  dzdzdzdz
cccc

2'''1' 1   
    + …       

    (III) 

The  function  f  and  g   both  are  analytic    within and  on  C  and  f(z) ≠ 0  for  any   point  on  C . Hence    


f

g
  is  

analytic  and    non–zero  for  any point   on  C.  Therefore     and  it‟s  all  derivatives are analytic  

   By  caucly‟s  integral  theorem,  each      integral  on   R.H.S  of  (3)  vanishes  consequently. 

  01
''  dz

c

  

In  this  event  (2)  takes  the  form 

 

N2 -  N1  =0           or          N1  -    N2  

 

3. Proof of Fundamental Theorem of Algebra 
Consider  the  polynomial 

a0  + a1z  +  a2z
2  

+ .   .   . + anz
n
 

such that   an  ≠  0   

 Take   f(z)  =  anz
n
 

g(z) = a0 + a1z +  .  .  .  + an-1z
n-1

 

Let C be a circle    │ z│= r  where r  > 1.  

Then  

│g(z) │   │ a0│ + │ a1│r  + │ a2│r
2
 +. . . +│an-1│r

n-1
 

 

│g(z) │  │ a0│ r
n-1 

+│ a1│ r
n-1  

+│ a2│ r
n-1

….+ │ an-1│r
n-1 

 

│g(z) │    [│a0 │+ │a1│ +│a2│ + . . . +│an-1│]r
n-1 

 

But                │f(z) │= │an z
n
 │=  │an  │r

n
 

 

   
n

n

n
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raaaa
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1210 ...
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Now if │g(z) │<│f(z) │ so that 1
)(

)(


zf

zg , then 

 

1
... 1210


 

ra

aaaa

n

n  

This 

n

n

a

aaaa
r

1210 ... 


 

Since   r   is   arbitrary   and   hence   by  choosing    r  large  enough,  the  last  condition  can  be  satisfied so  th at   │g(z) 

│<│f(z)│.  Now  applying  Rouche‟s theorem,  we  find  that  the  given  polynomial      f(z) + g(z)   has  the  same   numbers    

of  zeros  as  f(z)    But  f(z) = anz
n
  has  exactly   n zeros   all  located     at z = 0 .    Consequently     f(z) +g(z)    has  exactly   

n  zeros.   Consequently the   given  Polynomial   has  already    n   zeros.   

Third Proof :For the proof we must know the fo llowing theorem known as Maximum  Modulus princip le . 

Statement:Suppose f(z) is analytic within and on a simple closed countor C and f(z) is not constant . Then │f(z) │ reaches its 

maximum value on C (and not inside C), that is  to say , if M is the maximum value of │f(z) │ on C, then      │f(z) │ <  M fo r 

every z inside C. 
 

PROOF: We prove this theorem by the method of contradiction, Analyicity of f(z) declares that   f(z) is continuous within and 

on C. Consequently │f(z)│ attains its maximum value M at the same point within or on C. we want to show that │f(z) │ 

attains the value M at a point lying on the boundary of C (and not inside C) . Suppose, if possible, this value is not attained on 

the boundary of C but is attained at a point z = a within C so that 

max│f(z) │=│f(a) │ = M……………(1) 

and │f(z) │ ≤ M   Z with in C………...(2) 

Describe a circle Γ with a as center ly ing within C. Now f(z) is  not constant and its continuity implies the existence of a point z 

= b  inside Γ  such that │f(b) │ <  M  

Let   > 0 be such that │f (b) │ = M -   

 Again │f(z) │ is continous at z = b  

 and so │[│f(z) │- │f(b) │]│ < 
2


 

 Whenever           │z – b │  <     

Since  

│[│f(z) │- │f(b) │]│≥ │f(z) │- │f(b) │ 

“or”  │f(z) │- │f(b) │ ≤ │[│f(z) │- │f(b) │]│< 
2


 

“or”       │f(z) │- │f(b) │< 
2


 

“or”     │f(z) │< │f(b) │+ 
2

   

= M -  +
2


 = M - 

2

  

“or”    │f(z) │< M - 
2


    z   s.t │z – b │<    …(3) 
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We draw a circle γ with center at b and radius δ. Then (3) shows that 

│f (z) │< M - 
2


    Z     inside γ      …………(4) 

Again we draw another circle  Ѓ
 
  with center at a and rad ius       │b – a │= r   

By Cauchy‟s  Integral formula .  
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Then                  M = │f (a) │ < M - 




4


 

“or”            M  <  M  - 




4


. A contradiction  

For M cannot be less than M -  




4


 

Hence the Required results follow. 

 

 

 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8 

 

||Issn 2250-3005(online)||                                                    ||December|| 2012                                                                   Page 306 

 
       

 

4. Minimum Modulus Principle 
STATEMENT:- Suppose f(z) is analytic within and on a closed contour C and Let f(z) ≠ 0 inside   C suppose further that f(z) 

is not constant .   Then  │f(z) │ attains its minimum value at a    point on the boundary of “C” that is to say,    if M is the 

minimum value of │f(z) │ inside and on C. Then    │f(z) │>  m  z inside C 

PROOF:f(z) is analytic within and on C and  f(z) ≠ 0   inside C. It follows that 
)(

1

zf
is analytic within C. By Maximum 

Modulus principal  

)(

1

zf

 attains its Maximum value on the boundary of C. So that │ )(zf  │ attains its Minimum 

value on the boundary of C. Hence the theorem 

 

5. Proof Of The Fundamental Theorem Via Maximum 

Modulus Principle Proof: Assume p(z) is non-constant and never zero.    M such that |p(z)|   |a0| ≠ 0 if |z| > M. Since |p  

(z)| is continuous, it achieves  its min imum on a closed interval. Let z0 be the value in the circle of radius M where p (z) takes 

its minimum value. 

So |p(z0)|   |p(z)|  for  all   z    C,  and in part icular  

 |p(z0)|    |p(0)| = |a0|. 

Translate the polynomial.  

 Let p (z) = p((z - z0) + z0); 

 Let p (z) = Q(z - z0). 

 Note the min imum of Q occurs at 

 z = 0: |Q(0)|   |Q(z)| for all z     C. 

 Q(z) = c0 + cj z
j
 + · · · + cn z

n
, 

 Where j is such that cj is the first coefficient (after c0)  that  is   

Non-zero.  I   must    show Q(0) = 0 Note  if c0 = 0,  we are done. 

We may rewrite such that 

                      Q(z)  =   c0 +  cjz
j
  +  z

j+1  
R(z) 

We will ext ract roots.  

 

Let  

re
iө

 = - 
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Further, Let    

j
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j erz





1

1
 

So,                     0czc j

j   

 Let  0  be a small real number. Then  
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Where N chosen  such that  )( 1zRN  , and  is chosen so that 
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0

1

1

1 cz jjj 


 

Thus, 

           ,)( 01 czQ   

But this was supposed to be our minimum. Thus , a contradiction. Hence proved  

 

6. Proof of the Fundemental Theorem via Radius of convergence 

We now prove the Fundamental theorem of Algebra: As always, p(z)  is a non constant polynomial. Consider 

...
)(

1
)( 10  zbb

zp
zf  

  and 

  0,...)( 00  aazazp n

n  

Lemma. Crc  ,  such that 
k

k crb  for infinitely many  k. 

   Now,  1= p(z)f(z). Thus, a0b0 = 1. This is our basic step .Assume we have some coefficient such that │bk│ > cr
k
. We claim 

we can always find another .Suppose there are no more .Then the coefficient of z
k+n

 in p(z)f(z) is 

 

0...110   knnknk bababa  

Thus, as we have 
j

j crb  in this range ,we have   the coefficient satisfies  

nn
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This will g ive that 

 

n
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k
a

baba
b

110 ...  
  

k

n

knnk

k cr
a

baba
b 




 110 ...
 

 

for sufficiently s mall. 

 

Let z = 
r

1 , Then 

                        c
r

b
zb

k

kk

k   

This is true for infinite ly many k, hence the       power series diverges, contradicting the assumption that function is analytic 

and   its power series converges everywhere. 

 

7. Proof Of The Fundamental Theorem Via Picard’s Theorem 
Statement: If there are two d istinct points that are not in the image of an entire function p(z)  (ie.

21 zz   such 

that for all  

     21)(, orzzzpCz  ),  

then p(z)  is constant. 

We now prove the Fundamental Theorem of A lgebra; 
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Let p(z) be a non-constant polynomial, and assume p(z) is  never 0. 

Claim:- If  p(z) is as above , p(z) does not take on one of the variable 
k

1
  fo r Nk   

Proof: Assume not. Thus, Czk   such that 
k

zp k

1
)(  . If we take a circle D centered at the orig in with 

sufficiently large radius, then │p(z) │ > 1 for all z outside D. Thus each Dz 1
, we have a convergent subsequence. Thus 

we have 'zz
in  .but 

 

0)(lim)( ' 
 i

i

n
n

zpzp . 

Thus there must be some k such that 
k

zp
1

)(  .  Since there are two distinct values not in range of p, by  picard‟s 

Theorem it is now constant.  This contradicts our assumption that p(z) is       non-constant. Therefore, p(z0) = 0 for some z0 . 

Remark:- One can use a finite or countable versions of picards. Rather than missing just two points, we can modify the above 

to work if Picard instead stated that if we miss finitely many  (or even countably) points, we are constant.  Just look at the 

method above, gives

1

1

k
. We can then find another larger one, say 

2

1

k
.And so on. We can even get uncountably many 

such points by looking at numbers such as 
2


 (using now  the transcendence of C is 1).  

 

8. Proof Of The Fundamental Theorem Via Cauchy’s Integral Theorem 
Statement:- Let f(z) be analytic inside and on the boundary of some region C. Then  





c

zf 0)(  

We now prove the Fundamental Theorem of A lgebra. 

Proof: Without loss of generality let p(z) be a non- constant polynomial and assume p(z) = 0. For  Rz .assume  

p(z) R   (Otherwise, consider  zpzp )( .  

Therefore, p(z) doesn‟t change signs for Rz ,      or  by the Intermediate Value Theorem it would have a zero. 

 




2

0

0
)cos2(p

d  

This follows from our assumption that p(z) is of constant signs for real argument, bounded above from 0. This integral equals  

the contour integral 

 












1

1

1

1 )(

1

)(

1

z

n

z
zQ

z

izzzp

dz

i
 

If  z ≠ 0, Q(z) ≠ 0 

If z =0, then Q(z) ≠ 0 Since  

P(z  +  z
-1

)   =   an(z + z
-1

)+ . . .    

z
n
p(z  + z

-1
)  =  z

n
(…anz

-n
) + . . . 

                              = an  +  z( . . .  ) 

Thus, Q(z) = an, which is non-zero . Hence, Q(z) ≠ 0 ,  

Consequently 
)(

1

zQ

z n

 is analytic. By the Cauchy Integral  

Formula 





1

1

.0
)(

1

z

n

zQ

z

i
 Thus, a contradiction! 
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9. The Fundamental Theorem Of Algebra 
Our    object   is  to  prove  that  every  non constant polynomial f(z) in one variable z ov er the complex numbers C 

has a root, i.e. that  is a complex number r in C such that f(r) = 0. Suppose that 

f(z)  =  anz
n
 + an-1z

n-1 
+ . . . + a1z + a0 

 

where n is at least 1, an  ≠ 0 and the coefficients  ai are fixed complex numbers. The idea of the   proof is as follows: we first 

show that as |z| approaches infinity, |f(z)| approaches infinity as well. Since |f(z)| is a continuous function of z,        it follows 

that it has an absolute minimum. We shall prove that this minimum must be zero, which establishes the theorem. Complex 

polynomial at a point where it does not vanish to decrease by moving along a line segment in a suitably chosen direction.  

We first review some relevant facts from calcu lus.  

 

10. Properties Of Real Numbers And Continuous Functions 
Lemma 1. Every sequence of real numbers has a monotone (nondecreasing or nonincreasing) subsequence. Proof. If 

the sequence has some term which occurs infinitely many times this is  clear. Otherwise, we may choose a subsequence in 

which all the terms are distinct and work with that. Hence, assume that all terms are d istinct. Call an element "good" if it is 

bigger than all the terms that follow it. If there are infinitely many good terms we are done: they will form a decreasing 

subsequence. If there  are only finitely many pick any term beyond   the last of them. It is not good, so pick a     term    after it 

that is bigger. That is not  good, so pick a term after it that is   bigger. Continuing in this way (officially, by mathemat ical 

induction) we get a  strict ly increasing subsequence. That proves the theorem 

lemma 2. A bounded monotone sequence of  real numbers converges.  

Proof. Th is is sometimes taken as an axiom   about the reals . What is given here is an intuitive justification. We assume the 

sequence is non-decreasing: for the other case, take the negatives. The boundedness forces  the integer parts  of the terms in the 

sequence to stabilize, since a bounded montone sequence of integers is eventually constant. Thus, eventually, the terms have 

the form m + fn  where m  is a fixed integer, 0 is    less than   or equal to fn < 1, and the fn are non decreasing.  The first digits 

of the fn (after the decimal point) don't decrease and eventually stabilize: call the stable value a1. For the fn which   begin with 

.a1 ... the second digits  increase and eventually stabilize: call the stable value a2. Continuing in this fashion     we construct a 

number f = .a1 a2 ... ah ... with       the property that eventually all the fn agree         with it to as many decimal p laces  as we 

like. It follows that fn approaches f as n   approaches infinity, and that the original sequence converges to m + f. That proves 

the theorem 

Lemma 3. A bounded sequence of real numbers has a convergent subsequence. If the sequence      is  in  the  closed  interval  

[a,b], so is the limit. 

  

Proof. Using Fact 1, it has a monotone subsequence, and this is also bounded. By Fact 2, the monotone subsequence 

converges. It is easy to check that if all terms are at most b (respectively, at least a) then so is the limit. That proves the 

theorem  
 

Lemma 4.  A sequence of points inside a  closed rectangle (say a is less than or equal to  x is less than or equal to b, c is less 

than or equal to y is less than or equal to d) has  a convergent subsequence. The limit is also in the rectangle.  
 

Proof. Using Fact 3 we can pick out a subsequence such that the x-coordinates converge to apoint in [a,b]. Applying lemma 3 

again, from this subsequence we can pick out a  further subsequence such that the  y-coordinates converge to a point in [c,d]. 

The x-coordinates of the points in this last subsequence still    converge to a point in  [a,b]. That proves  the theorem  
 

Lemma 5. A  continuous real-valued function   f defined on a closed rectangle in the plane is bounded and takes on an absolute 

minimum and an absolute maximum value.  
 

Proof. We prove the result for the maximum:     for the other case consider -f. For each integer   n = 1, 2, 3, ... divide the 

rectangle into n
2
   congruent sub rectangles by drawing n-1       equally spaced vertical lines and the same number of equally 

spaced horizontal lines. Choose a point in each of these sub rectangles    (call these the special points at step n ) and evaluate f 

at these points. From among these choose a point where f is biggest: call it Pn. The sequence    P1, P2, P3, ... has a convergent 

subsequence: call   it Q1, Q2, Q3, ..., where  

 knk pQ   Let Q be the limit of the sequence   Qk. It will suffice to show that f(Q) is bigger than or equal to f(P) 

for every point P in the rectangle. If not choose P in  the  rectangle such that f(P) > f(Q). For each k let  P'k be a special point at 

step nk in a sub rectangle (among the (nk)
2
)  that  contains P. It follows   that P'k approaches P as k approaches infinity,  since 
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both sides of the sub rectangles approach  zero as k approaches infinity. For every k, f(Qk)   is at least f(P'k), by the choice of 

Qk. Taking    the limit as k approaches infinity gives   a contradiction, since f(Qk) approaches f(Q) and, by the continuity of f, 

f(P'k) approaches f(P) as k approaches infinity. That proves   the theorem.  The result is valid for a continuous real-   valued 

function on any closed bounded set in     R
2
 or R

n
, where a set is closed if whenever a sequence of points in the set converges,             

the      limit point is in the set.  
 

Lemma 6. Let f be a continuous real-  valued function on the plane such that f(x,y) approaches infinity as (x,y) approaches 

infinity. (This means that given any real number B, no matter how large, there is a real number  m > 0 such that if x
2
 + y

2
 is at 

least m  then  f(x,y) is at least B.) Then f takes on an   absolute min imum value at a point in the plane.}  
 

Proof. Let B = f(0,0). Choose m > 0 such that if    x
2
 + y

 2
 is at  least  m  then  f(x,y )  is  at   least  B. Choose a rectangle that 

contains the  circle of radius m centered  at  the  origin.  Pick Q in the rectangle so that the minimum  value of f on the 

rectangle occurs at Q.  Since (0,0) is in the rectangle f(Q) is at most B. Since outside the rectangle all values of f are at least B, 

the value of f at Q is a minimum  fo r the whole plane, not just the rectangle. That proves the theorem 
 

Lemma 7.  Let g be a continuous function of one real variable which takes on the values c  and d on a certain interval. Then g 

takes     on every value r between c and d on that   interval.  Proof. Let g(a) = c and g(b) = d. We may   assume without loss of 

generality that a < b. Replacing g by g - r we may assume that    g is positive at one endpoint, negative at the other, and never 

vanishes. We shall    get a contradiction. We shall construct a     sequence of intervals I1 = [a,b], I2, ..., In, ...  such that I[n+1] is 

contained in In for each n, g   has values of opposite sign at the end points   of every In, and In has length 
 12 


n

ab . In fact if I = 

[an,bn] has already been constructed   and    M   is  the    midpoint   of   In,   then    g (M)    has opposite sign from at least one of 

the numbers g(an), g(bn), and so we can choose    one of [an, M] or [M, bn] for  1nI . The an are non decreasing, the bn 

are non increasing, and an< bn for all n. It follows that both     sequences have limits. But  bn – an approaches 0 as n approaches 

infinity, so the two limits    are the same. Call the limit h. Since an  approaches h, g(an) approaches g(h). Similarly, g(bn) 

approaches g(h). Since g(an) and g(bn)  have opposite signs for all n, this can only   happen              if g(h) = 0. That proves the 

theorem 
  

Remark:-     Consider   a   polynomial   f(x)   with real coefficients  of  odd degree.  Then  lemma  7 implies that f has at least 

one real root. To   see    this, we may assume that  f  has  a posit ive leading coefficient (otherwise, replace f   by -f). It is then 

easy to see that f(x) approaches +infinity  as x  approaches  + infinity  while    f(x) approaches -infinity as x approaches -

infinity.  Since f(x) takes on both positive and   negative values, lemma 7 implies that f takes on the value zero.  

We want to note that if u, u' are complex numbers then  

                          |u + u'|   |u | + |u'|.  

To see this note that, since both sides   are non-negative, it suffices to prove this            after squaring both sides, i.e. to show 

that  |u + u'|
2
    |u|

2
 + 2|uu'| +|u'|

2
. Now, it is easy  to see that for any complex number  v,  

                                               )(
2

vvv  , 

v where denotes the complex conjugate of v. Using this the inequality above  is equivalent to  
                

               '''',' 2)( uuuuuuuuuu 
. 

 Multiply ing out, and canceling the terms which occur on both sides, yields the equivalen t inequality 
''''' 2222 uuuuuuuuuuuu       

Let w = u(u')-. Then      '' uuuuw  . 

 Thus, what we    want   to    show   is    that www 2 . 

 If  w = a + bi where a, b are real this becomes   the   assertion   that  2a ≤ 2 {a
2
+b

2
}

1/2
  

 

or                  a 22 ba  , 

 which is clear. Moreover, equality holds if and only if a is non negative and b    is zero, i.e ., if and only  

if )( 'uuw   is a non-negative real number.  
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 We also get that |u  ± u'|  ≥  |u| - |u'|: replacing    u' by  if necessary we can assume the sign is -,  and we already know that |u | ≤ 

|u-u'| + |u'|,    which is equivalent. Finally, we want to justify carefully why, when n is a positive integer, every complex   

number has an n
th

 root. First note that the fact  holds for non-negative real numbers r using   lamma 6 applied to the function 

F:R to R   given by F(x) = x
n-r

 : the function is non-positive  at x = 0 and positive for all sufficiently large x,   and so takes on 

the value 0. We can now    construct an n
th

 root for r( tit sincos  ) ,namely  

                       r
1/n

 


















n

t
i

n

t
sincos  ,  

Using       De-Moivre's formula. 

 

11. Proof of the fundamental theorem of algebra 
Let  f(z) = an z

n
 + ... + a0,  where  the a

i
  are   in C,  n > 0,  and  an  is  not  0.  If   we   let      z = x + yi  with x and y 

varying in R, we can think of    f(z)   as   a   C-valued  function  of  x  and     y. In fact if we mult iply out and collect terms we     

get a formula  

f(z) = P(x,y) + iQ(x,y)  

where P and Q are polynomials in two real variab les x, y. We  can therefore think of  

|f(x+yi)| = (P(x,y)
2
 +Q(x,y)

2
)
1/2

  

as a continuous function of two real variables. We want to apply lamma 6  to conclude that it takes on an absolute min imum. 

Thus,   we   need   to understand  what  happens  as 

 (x,y) approaches infinity. But we have 

 

nzz

n

z

nn

n bbbazzf 021 ...1)(
2

 
, 

 where bi = ai/an for 0 ≤ i ≤ n -1. Now  

 

     

    

































n

n

zz

n

z

n

zz

n

z

n

bbb

bbb

021

021

2

2

1

...1
...(A) 

   

The term that we are subtracting on the right   is at most  

   
nzz

n

z

n bbb 021 ...
2

 

, 

and this approaches 0 at |z| approaches infinity. Hence, for all sufficiently large |z|, the quantity on the left in the ineq uality 

labeled (A) is at least 1/2, and so |f(z)| is at least |z|
n
 

2

1

na   (1/2)       for large |z|. Thus, |f(z) | approaches infinity as |z| 

approaches infinity. Th is implies, by  lamma 6, that we can choose a point z = r = a + bi where |f(z)| is an absolute min imum.  

The rest of the argument is devoted to  showing    that  f(r) must be zero. We  assume otherwise and get a contradiction. To 

simplify calcu lations we are going to make several changes of variable. Simplification 1. Let g(z) = f(z+r), which is    also a 

polynomial in z of degree n. g (resp. |g|)  takes on the same set of values as f (resp. |f|).  But |g| is min imum at z = 0, where the 

value is |f(0+r)| = |f(r)|. Thus, we may assume without  loss of generality that |f| is minimum at z = 0.     (We change  back the 

notation and don't refer to g any more.) We are now assuming that    a0 = f(0) is not 0. Let a = |a0|.  Simplification 2. Rep lace f 

by (1/a0)f. All values of f are divided by a0. All values of |f| are divided     by a. The new function still has its minimum 

absolute value at z = 0. But   now the min imum is 1. We still write f  for the function. Thus, we can assume that f(0) is 1 (this 

means that a0 = 1) and that 1 is the minimum of |f|.  Simplification 3. We know that an is not 0. Let k be the least positive 

integer such that ak is  not 0.  (It might be 1 or n.)  We  can  write  
n

n

k

k zazazf  ...1)(  

 We next observe that if we rep lace f(z) by    f(cz) where c is a fixed  nonzero complex number the set of values of f (and of |f|) 

does not change, nor does the constant term, and 0 = c(0) stays fixed. The new f has all the   same properties as the old: its 
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absolute value is still min imum at z = 0. It makes life simplest   if we choose c to be a k
th

 root of (-1/ak). The   new f we get 

when we substitute cz for z then    turns out to be 1 – z
k
 + a'k+1 z

k+1
 + ... + a'n z

n
.   Thus, there is no loss of generality in 

assuming    that  ak = -1.  Therefore,   we   may   assume       that   

                             f(z) = 1 – z
k
 + ak+1 z

k+1
+ ... +an z

n
. 

If n = k then    f(z) = 1 – z
n
 and we are done, since f(1) = 0. Assume from here on that k   is less than n. The main point. We 

are now ready to finish  the proof. All we need to do is show   with f(z) = 1 – z
k
 + ak+1z

k+1
 + ...+ anz

n
  that  the minimum 

absolute value of f is less than 1, contradicting the situation we have managed to set up by assuming that f(r) is not 0. We shall  

show that the absolute value is indeed  less than one when z is a s mall positive real   number (as we move in the complex p la ne 

away from the origin along the positive real  axis or x-axis, the absolute value of f(z) drops   from 1.) To see this assume that z 

is a positive    real number with 0 < z < 1. Note that 1-z is        then positive. We can then write  

 

|f(z)|  =|1 – z
k
 + ak+1z

k+1
 + ... + anz

n
 |  

 

         ≤|1-z
k
|+|ak+1z

k
+...+anz

n
|  

 

= 1- z
k
 + | ak+1z

k+1
   + ... + anz

n
|  

 

≤1- z
k
 + | ak+1|z

k+1
     +  .  .  . + |an|z

n
  

(keep in mind that z is a positive real number)  

  

  = 1 - z
k
  (1 – wz), where  

                                                 wz = | ak+1|z + ... +|an|z
n-k

. 

  

When z approaches 0 through positive values so does wz. Hence, when z is a s mall positive  real number, so is z (1-wz), and so 

for z a    s mall  positive  real  number  we  have  that  

                              0 < 1 – z
k
(1-wz) < 1.  

 

Since  |f(z)| < 1 – z
k
(1-wz)  

it  follows  that  |f(z)|  takes  on  values  smaller than 1, and so |f(z)| is not min imum at  z = 0 after all. Th is is a cont radiction. It 

follows  that  the minimum value of |f(z)| must be 0, and so f has a  root .That  proves  the  theorem.  

 

12. Fundemental Theorem of Algebra via Fermat’s Last Theorem 
For the proof of the theorem we must know the following lemmas  

 

Lemma 1:If an algebraic equation f(x) has a root α, then f(x) can be divided by x-α without a remainder and the degree of the 

result f'(x) is less than the degree of f(x).  

 

Proof: 

Let f(x) =  x
n 

 +  a1 x
n-1 

 +  .  .  .  +  an-1x  +  an 

Let α be a root such that f(α) = 0 

Now, if we div ide the polynomial by (x-α), we get the following  

 f(x)/(x - α) = f1(x) + R/(x-α) 
 

where R is a constant and f1(x) is a polynomial with   order n -1. 

Multiplying both sides with x-α gives us: 

f(x) = (x - α)f1(x) + R 

Now, if we substitute α for x we get: 

f(α) = 0      which  means  that  the constant in the equation  is  0  so  R = 0. That proves the lemma.  
 

 

Theorem: Fundamental Theorem of Algebra  

 

For  any polynomial  equation of order n, there  exist n   roots ri such that: 

xn  + a1 x 
n-1

 + ... + an-1 x + an = (x – r1)(x – r2) . . . (x – rn) 

Proof: Let f(x) = xn + a1 x
n-1

 + ... + an-1 x + an 

 We know that f(x) has at least one solution α1.  

 Using Lemma 1 above, we know that: 

f(x)/(x – α1) = f'(x) where deg f'(x) = n-1. 
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So that we have: 

f(x) = (x – α1)f'(x) 

But we know f'(x) has at least one solution α2 

f'(x)/ (x–α2) = f''(x) where deg f''(x) = n-2. And 

f(x) = (x – α1)(x – α2)f''(x) 

Eventually we get to the point where the degree of  

fn(x)=1 .In this case, fn(x) = x – αn. This establishes that there are n roots for a given equation f(x) where the 

degree is n. Putting this all together gives us: 

f(x) = (x – α1)(x – α2).   .   . (x – αn) 

Now, since f(x)=0 only when one of the values    α i=x, we see that the n roots αi are the only solutions. 

So, we have proven that each equation is equal to n roots.One important point to remember is that the n roots are not 

necessarily distinct. That is, it is possible that   α i = αj where i ≠ j.    That proves the theorem 

 

Fundamental theorem of A lgebra due to Cauchy 

We will prove  
 

f(z) = z
n  

+ a1z
n-1

 + a2z
n-1

 + .   .   . + an  = 0 
 

where ai  are complex numbers  n ≥ 1 has a complex root. 
 

Proof:-   let   an ≠ 0    denote        z = x + iy    x,   y      real  Then   the    function    

                            

 g(x ,y)    = │f(z) │= │f(x + iy) │ 

 

Is defined and continuous in R
2
 

Let  



n

j

jac
1

  it  is  +ve using the triangle inequality  

We make the estimation 

n

nn

z

a

z

a

z

a
zzf  ...

2
1)(

2

1  
















n

n

z

a

z

a

z

a
zf ...1)(

21  

nn
z

z

c
zzf

2

1
1)( 














  

Being true for  cz 2,1max denote   n
nacr 2,2,1max:  conside the 

disk ryx  22
 Because it is compact the function g(x,y) attains at   a    point (x0 y0) of  the  disk  its  absolute  

minimum value (infimum) in the disk if │z│> r  we have  

 

   02
2

1

2

1

2

1
)(),(  n

n
n

nn
aarzzfyxg  

 

Thus 

            rzforzfagyxg n  )()0,0(),(  

Hence ),( 00 yxg  is the absolute min imum of g(x,y)  in the whole complex plane  

we show that g(x0 y0) = 0 therefore we make the antitheses that  g(x0y0) > 0 

 

Denote  UBziyxz  0000
 

 
nn

nn UUbUbbuzfzf  



1

110 ...)()(  

 

Then bn = f(z0) ≠ 0 by the antithesis 
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More over denote 

 

             

nn

j

j
b

cni
b

b
c

1
),...12( 0   

And assume that  cn-1 = cn-2 = . . . = cn-k+1 = 0 

But  cn-k  ≠ 0 then we may write 

 

)...1()( 0

1

1

kk

knknknn ucucuccbzf  

  

 

  If 
)sin(cos&)sin(cos  

  euipuc k

kn
 

 

    Then  

   
)sin()(cos  kiknk

kn peuc 

   

 

   By Demorvie‟s identity  choosing 

k


  &1     we get  

kk

kn peuc    &  can  make the estimate 
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Where R is constant 

Let now 


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.,1min  we obtain 
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
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


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Which results is impossible since │f(z) │ was absolute minimum. Consequently the antithesis is wrong & the proof is settled.  

 

13. Another Proof Of Fundamental Theorem Of Algebra 
The proof depends on the following four lemmas 

 

Lemma1: Any odd-degree real polynomial must have a real root.  

Proof: 

We know from intermediate value theorem,  suppose   xRxp )(  with degree p(x) = 2k +1 and  

suppose the leading coefficient  an > 0 

 ( the proof is almost identical  if  an > 0). Then   
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P(x) = an x
n
  + (lower terms) 

And  n is odd . Then, 

 

(1)  

n

nxx xaxp lim)(lim  since  an  > 0. 

 

(2)  

n

nxx xaxp lim)(lim  

 since  an  > 0 and  n is odd. 

From (1) , p(x) gets arbitrarily large positively , so there exists an x1 with  p(x1)  > 0 . Similarly, from (2) their exits an x2 with     

p(x2) < 0 A real polynomial is a continuous real – valued function for all  Rx  , Since p(x1) p (x2) < 0, it fo llows by the 

intermediate value theorem that their exits an x3 , between x1  and x2, such that      p(x3 ) = 0. 

 

Lemma 2: Any degree two complex polynomials must have a complex root. 

 

Proof: We know from consequence of the quadratic formula and of the fact that any complex number has a square root. 

If p(x) = ax
2
 + bx + c, a ≠ 0, then the roots formally are  

a

acbb
x

a

acbb
x

2

4
,

2

4 2

2

2

1





  

From DeMoivere‟s theorem every complex number has a square root, hence x1 , x2  exists in C. They of course may be same if       

b
2
  - 4ac = 0. 

 

Lemma 3: If every non-constant real polynomial has a complex root, then every non-constant complex polynomial has a 

complex root. 

Proof: According to concept of the conjugate of complex polynomial  

Let  xRxP )(  and suppose that every non-constant real polynomial has at least one complex root. Let 

).()()( xPxPxH  from previous lemma   xRxH )( . By supposition there exists a  Cz 0 with      

H(z0) = 0.  then  

                                     0)()( 00 zPzP , 

 And    since   C   has  no  zero   d ivisors,   either  

                           )( 0zP  = 0 or )( 0zP  = 0. 

 then previous lemmas  

                         0)()()( 000  zPzPzP . 

Therefore, 0z is root of p(x). 

 

 

Lemma 4:- 

Any non-constant real polynomial has a complex root. 

 

 

Proof: Let   xRxa. . .x a a  f(x) n

n10   

with n ≥ 1 , an ≠ 0.  The proof is an induction on the degree n of f(x). Suppose  n = 2
m
q where q is odd. We do the induction on 

m. if m = 0 then f(x) has odd degree and the theorem is true from lemma 1. Assume then that theorem is true for all degrees d 

= 2
k
 q

‟
 where  k > m and q

‟  
is odd . Now assume that the degree of f(x) is n = 2

m
q. Suppose F

‟
 is the splitting field for f(x) over 

R in which the roots are n ,...,1 . We show that at least one of these roots must be in C. ( In fact, all are in C but to 

prove the lemma we need only show at least one.) 

Let Zh  and from the polynomial 

))(()( ji

ji

i hjxxH  

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This is in F
‟
[x] we chose pairs of roots  

ji  , , so the number of such pairs is the number of ways of choosing two 

elements out of  n = 2
m
q elements. This is given by 

 

'12)12(2
2

)12)(2(
qqq

qq mmm
mm


  

 

With q'odd. Therefore, the degree of H(x) is 2
m-1

q'. 

H(x) is a symmetric polynomial in the root n ,...,1 . Since n ,...,1  are the roots of a real polynomial, from 

lemma 3 any polynomial in the splitting field symmetric field symmetric in these  roots must be a real polynomial.  

Therefore,  xRxH )(  with degree 2
m-1

q
‟
.By the inductive hypothesis, then, H(x) must have a complex root. This 

implies that there exists a pair  
ji  ,  with 

                              Cjh iji    

 Since  h was an arbit rary integer , fo r any integer  h1 there must exists such a pair  
ji  ,  with   

                             Cjh iji    

Now let h1 vary over the integers. Since there are only finitely many such pairs 
ji  , , it follows that there must be 

least two different integers h1 , h2 such that 

 

                                Chz jiji   11
 

and  

                              Chz jiji   22  

  

Then                   Chhzz ji  )( 2121  

and since CZhh 21,  it follows that Cji  . But then Ch ji 1 , from which it follows that 

Cji  . 

  Then,  

 xCxxxxxP jijiji   )())(()( 2
 

However, P(x) is then a degree–two complex polynomial and so from lemma 2 its roots are complex. Therefore, 

Cji   and therefore f(x) has a complex root. 

  It is now easy to give a proof of the Fundamental Theorem of Algebra. From lemma 4 every non constant real polynomial 

has a complex root. From lemma 3 if every non constant real polynomial has a complex root, then every non - constant 

complex polynomial has a complex root providing the Fundamental Theorem  
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