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Abstract 
Artificial bee colony optimization (ABC) is a fast and robust algorithm for global optimization. It has been widely 

used in many areas including mechanical engineering. Biogeography -Based Optimizat ion (BBO) is a new biogeography 

inspired algorithm. It mainly uses the biogeography-based migration operator to share the information among solutions. In this 

work, a hybrid algorithm with BBO and ABC is proposed, namely HBBABC (Hybrid Biogeography based Artificial Bee 

Colony Optimization), for the global numerical optimization problem. HBBABC combines the searching behavior of ABC 

with that of BBO. Both the algorithms have different solution searching tendency like ABC have good explorat ion searching 

tendency while BBO have good exploitat ion searching tendency.  To verify the performance of proposed HBBABC, 14 

benchmark functions are experimented with discrete design variables. Moreover 5 engineering optimization problems with 

discrete design variables from literature are also experimented. Experimental results indicate that proposed approach is 

effective and efficient for the considered benchmark problems and engineering optimization problems . Compared with BBO 

and ABC separately HBBABC performs better. 

 

1. Introduction 
Hybridizat ion of algorithm means to combine the capabilities of different algorithm in a single algorithm. 

Hybridizat ion is done to overcome the drawback in the existing algorithms  and to obtain better solutions. Evolutionary 

Algorithms (EAs) are very popular for the hybridizat ion due to their different capabilit ies in handling different types of 

problems. There is a continuous research to find new optimization techniques which are capable of handling variety of 

problems with high effectiveness, efficiency and flexib ility and thus there are many such optimizat ion algorithms like GA, SA, 

DE, PSO, ACO, SFLA, ABC, BBO etc. Hybridization is one of the popular methods to increase the effectiveness, efficiency 

and flexibility of the algorithm to produce better solution and convergence  rates and thus saving computational times. Many 

such hybrid algorithms are availab le in the literature and continuous efforts are continued to develop new hybrid algorithms.  

Literature survey of some of the recently developed hybrid algorithm is given in Table 1.ABC is a simple and powerful 

population-based algorithm for finding the global optimum solutions. ABC div ides the population in two main parts viz. 

employed bees and onlooker bees. Employed bees start the search with specific rules and onlooker bee s follow the employed 

bees corresponding to the fitness of employed bees and it also updated the solution as employed bees. If there is no change in 

the fitness of employed bees for some number of generations than that bee is converted in scout bee which s tart for a new 

search and acts as a employed bees from then. Algorithm continues for predefined number of generations or until the best 

solution is found.  So ABC finds the global solution by exploring the search space with specific ru les followed by emplo yed 

bees, onlooker bees and scout bees. Biogeography-Based Optimization (BBO), proposed by Simon (2008), is a new global 

optimization algorithm based on the biogeography theory, which is the study of distribution of species. BBO is also 

population-based optimization method. In the original BBO algorithm, each solution of the population is a vector of integers. 

BBO updates the solution following immigration and emigrat ion phenomena of the species from one place to the other which 

is referred as islands by Simon.  Simon compared BBO with seven other optimizat ion methods  over 14 benchmark functions 

and a real-world sensor selection problem. The results demonstrated the good performan ce of BBO. BBO has good 

exploitation ability as solution is updated by exchanging the existing design variables among the solution.  

 

In order to combine the searching capabilit ies  of ABC and BBO, in this paper, we propose a hybrid ABC with BBO, referred 

to as HBBABC, for the global numerical optimizat ion problems. In HBBABC, algorithm starts by updating the solutions using 

immigrat ion and emigrat ion rates. Solution is further modified using the exploration tendency of ABC using employed, 

onlooker and scout bees.Experiments have been conducted on 14 benchmark functions with discrete design variables Simon 

(2008) and also on 5 engineering optimization problems . 

  

2. Optimization Algorithms 
2.1 Biogeography-based optimizat ion (BBO)  

BBO (Simon 2006) is a new population-based optimization algorithm inspired by the natural biogeography 

distribution of different species. In BBO, each individual is considered as a “habitat” with a habitat suitability index (HIS). A 

good solution is analogous to an island with a high HSI, and a poor solution indicates an island with a low HSI. High HSI 

solutions tend to share their features with low HSI solutions. Low HSI solutions accept a lot of new features from high HSI 
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solutions. In BBO, each individual has its own immigration rate λ and emigration rate μ. A good solution has higher μ and 

lower λ and vice versa. The immigrat ion rate and the emigration rate are functions of the number of species in the habitat. 

They can be calculated as follows 
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 where I is the maximum possible immigration rate; E is the maximum possible emigration rate; k  is the number of species of 

the k-th individual; and n is the maximum number of species. In BBO, there are two main operators, the migration and the 

mutation.  

 

2.1.1 Migration 

Consider a population of candidate which is represented by design variable. Each design variable for part icular 

population member is considered as SIV for that population member. Each population member is considered as individual 

habitat/Island. The objective function value indicates the HSI fo r the particular population member. Immigrat ion and 

emigration rates are decided from the curve given in Figure 1. In Figure 1 the nature of curve is assumed to be same (linear) 

for immigrat ion and emigration but with opposite slopes. S value represented by the solution depends on its HSI. S1 and S2 

represent two solutions with different HSI. The emigration and immigrat ion rates of each solution are used to probabilistical ly 

share information between habitats. If a given solution is selected to be modified, then its immigration rate λ is used to 

probabilistically modify each suitability index variab le (SIV) in that solution. If a given SIV in a given solution Si is selected 

to be modified, then its emigration rates μ of the other solutions is used to probabilistically decide which of the solutions 

should migrate its randomly selected SIV to solution Si. The above phenomenon is known as migration in BBO. Because of 

this migrat ion phenomenon BBO is well suited for the discrete optimizat ion problems as it deals with the interchanging of 

design variables between the population members.  

 

2.1.2 Mutation 

In nature a habitat‟s HSI can change suddenly due to apparently random events (unusually large flotsam arriving 

from a neighbouring habitat, disease, natural catastrophes, etc.). This phenomenon is termed as SIV mutation, and 

probabilit ies of species count are used to determine mutation rates.  

This probability mutates low HSI as well as high HSI solutions. Mutation of high HSI solutions gives them the chance to 

further improve. Mutation rate is obtained using following equation. 
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Where, mmax is a user-defined parameter called mutation coefficient.  

 

2.2 Artificial Bee Colony (ABC) technique  

Artificial Bee Colony (ABC) Algorithm is an optimizat ion algorithm based on the intelligent foraging behaviour of 

honey bee swarm. The colony of artificial bees consists of three groups of bees: employed bees, onlookers and scouts 

(Karaboga 2005, Basturk and Karaboga 2006).  An employed bee searches the destination where food is available. They 

collect the food and returns back to its origin where they perform waggle dance depending on the amount of food available at 

the destination. The onlooker bee watches the dance and follows employed bee depend ing on the probability of the available 

food means more onlooker bee will fo llow the employed bee associated with the destination having more amount of food. The 

employed bee whose food source becomes abandoned convert into a scout bee and it searches for the new food source. For 

solving optimization problems the population is divided into two parts consisting of employed bees and onlooker bees. An 

employed bee searches the solution in the search space and the value of objective function associated with the  solution is the 

amount of food associated with that solution. Employed bee updates its position using Equation (4) and it updates new 

position if it is better than the previous position, i.e  it follows greedy selection. 

)( kjijijijij xxRxv 
         (4) 

Where vij is the new position of employes bee, xij is the current position of employed bee, k is a random number between (1, 

N(population size)/2) ≠ i and j =1, 2,...,Number of design variables. Rij is a random number between (-1, 1).An onlooker bees 

chooses a food source depending on the probability value associated with that food source, pi , calculated using Equation (5). 
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Where Fi is the fitness value of the solution i  and N/2 is the number of food sources which is equal to the number of employed 

bees.Onlooker bees also update its position using Equation (4) and also follow greedy selection. The Employed bee whose 

position of the food source cannot be improved for some predetermined number of cycles than that food source is called 

abandoned food source. That employed bee becomes scout and searches for the new solution randomly using Equation (6). 
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The value of predetermined number of cycles is an important control parameter of the ABC algorithm, which is called “ limit” 

for abandonment. The value of limit is generally taken as Number o f employed bees*Number of design variables (Karaboga 

and Basturk 2007, Karaboga and Basturk 2008).  

 

2.3 Hbbabc: Hybrid Biogeography Based Artificial Bee Colony Optimization  

As mentioned above, ABC is good at exploring the search space and locating the region of global minimum. On the 

other hand, BBO has a good exploitation searching tendency for global optimization. Based on these considerations, in order 

to maximize the explorat ion and the explo itation a HBBABC approach is proposed. Step by step procedure for the 

implementation of HBBABC is given as follows .  
 

Step 1: Init ialize BBO and ABC parameters which are necessary for the algorithm to proceed. These parameters includes 

population size, number of generations necessary for the termination criteria, Maximum immigration and emigration rates, 

number of design variables and respective range for the design variables.  
 

Step 2: Generate random population equal to the population size specified. Each population member contains the value of all 

the design variables. This value of design variab le is randomly generated in between the design variable range specified. Every 

design variable in the population indicates SIVs fo r that respective population member (Habitat)  
 

Step 3: Obtain the value of objective function for all population members. The value of objective function so o btained 

indicates the HSI for that Habitat (population member). If problem is constrained optimization problem than some penalty 

approach is used to convert constrained optimization problem to unconstrained optimizat ion problem.  
 

Step 4: Map the value of HSI to obtain the species count. High species count is allotted to the population member having high 

HSI for maximization optimization problem. If the optimizat ion problem is of min imization type than low HSI member is 

given high species count.  
 

Step 5: Modify population using the migration operator considering its immigration and emigrat ion rates.  If a given solution 

is selected to be modified, then its immigration rate λ is used to probabilistically modify each suitability index variable (SIV) 

in that solution. If a  given SIV in a given solution Si is selected to be modified, then its emigration rates μ of the other 

solutions is used to probabilistically decide which of the solutions should migrate its randomly selected SIV to solution Si.  

Pseudo code for migrat ion is given as follows. 

For  i = 1 to NP  

Select Xi with probability proportional to λi 

if rand(0, 1) < λi 

For  j = 1 to NP  

Select Xj with probability proportional to μj 

if rand(0, 1) < μj  

Randomly select a variable σ from Xj  

Replace the corresponding variable in Xi with σ  

Endif 

  Endif 

  End 

End 

Step 6 : Divide the population into two equal parts to act as employed bees and onlooker bees. Obtain the value of objective 

function for employed bees. The value of objective function so obtained indicates the amount of nectar (food) associated with 

that destination (food source). 
 

Step 7: Update the position of employed bees using Equation (4). If the value of objective function of the new solution is 

better than the existing solution , replace the existing solution with the new one.  
 

Step 8: Calculate probability associated with the different solutions using Equation (5). Onlooker bee follows a solution 

depending on the probability of that solution. So more the probability of the solu tion more will be the onlooker bee following 

that solution.  
   

Step 9: Update the position of onlooker bees using Equation (4). If the value o f objective function of the new solution is better 

than the existing solution, replace the existing solution with  the new one 
 

Step 10: Identify abandon solution and replace it with the newly generated solution using Equation (6)  
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Step 11: Continue all the steps from step 3 until the specified number of generations are reached.  
 

Detailed pseudo code is given below: 

  

START 

Initialize required parameters necessary for the algorithm (as mentioned above) 

Generate the init ial population N, Evaluate the fitness for each individual in N 

For i=1 to number of generations  

  _________________________________________________________________________ 

 BBO loop 

 _________________________________________________________________________ 

For each indiv idual, map the fitness to the number of species  

  Calculate the immigration rate λi and the emigration rate μi for each individual Xi 

For  i = 1 to N  

Select Xi with probability proportional to λi 

if rand(0, 1) < λi 

For  j = 1 to N  

Select Xj with probability proportional to μj 

if rand(0, 1) < μj  

Randomly select a variable σ from Xj  

Replace the corresponding variable in Xi with σ 

Endif 

  Endif 

  End 

End 

________________________________________________________________________ 

ABC loop 

_________________________________________________________________ 

For  i = 1 to N/2  

Produce new solutions υij for the employed bees and evaluate them 

Replace new solution if it is better than the previous one 

End 

Calculate the probability values pij for the solutions   

Identify onlooker bees depending on the probability  pij 

For  i = 1 to N/2  

Produce the new solutions υij for the onlookers  

Replace new solution if it is better than the previous one 

End 

Determine the abandoned solution for the scout, if exists, and replace it with a  new randomly produced 

solution xij  

 End 

End 

STOP 

It can be seen from the pseudo code that HBBABC requires small ext ra calculat ion effort than BBO but it combines 

the strength of both the algorithms in searching the optimum solutions. To demonstrate the effectiveness of the proposed 

algorithm many experiments were conducted on benchmark prob lems which is discussed in the next section. 

 

3. Application On Benchmark Problems 
In the field of optimization it is a common practice to compare d ifferent algorithms using different benchmark 

problems. In this work 14 d ifferent benchmark problems are considered having different characteristics like separability, 

multimodality and regularity (Simon 2008).  A function is multimodal if it has two or more local optima. A function is 

separable if it can be written as a sum of functions of variab le separately. Function is regular if it is differentiable at e ach point 

of their domain. Non seperable functions are more difficult to optimize and difficulty increases if the function is mult imodel. 

Complexity increases when the local optima are randomly distributed. Moreover complexity increases with the increase in 

dimensionality.   Description of all the benchmark problems with respect to Multimodality, Separability and regularity are 

given in Table 2. All the benchmark prob lems are explained as follows with their optimum value and optimum design 

parameters.Sphere Model
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Schwefel‟s Prob lem 2.22 
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Schwefel‟s Prob lem 1.2 
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Schwefel‟s Prob lem 2.21 
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Generalized Rosenbrock‟s Function 
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Step Function 
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Quartic Function 
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Generalized Schwefel‟s Problem 2.26 

  
5.12569)9687.420...9687.420,9687.420()min(,500500

sin)(
30

1



 


ffx

xxxf

i

i

ii

  (14)

 

Generalized Rastrigin Function 
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Ackley‟s function 
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Generalized Griewank function 
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Generalized penalized function 1 
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 Generalized penalized function 2 
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Fletcher-Powell 
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3.1 Discrete optimization of  benchmark problems  

14 Benchmark problems were compared by implement ing integer versions of all the optimizat ion algorithms in 

Matlab. The granularity or precision of each benchmark function was 0.1, except for the Quartic function (Simon 2008). Since 

the domain of each dimension of the quartic function was only ±1.28, it  was implemented with a granularity of 0.01. ABC was 

specially tuned to take integer value in each iteration modifying Equation (6) and (8) as. 
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 All the algorithms were run for 100 t imes considering different population size and number of generations depending on the 

complexity of p roblem. For BBO and HBBABC Habitat modificat ion probability was taken as 1 and for ABC limit is set as 

Population size/2 * Number of design variables. Results for the discrete optimizat ion of benchmark prob lems are given in 

Table 3 which shows the Best Value, Mean Value and T-Test Value for all the benchmark problems. Results are also shown 

considering different number of design variables viz. 30, 50, 100 and 200 (Dimensions). Population size is taken as 50 for all 

the problems and number o f generation taken is equal to 50 fo r 30 and 50 dimensions, 100 for 100 d imensions and 200 for 200 

dimensions.It is seen from the Table that out of 14 benchmark problems considering discrete design variables hybrid 

HBBABC has shown better result for 12 bench mark problems for the best and mean values for 100 runs. Only for Schwefel 

1.2 and Schwefel 2.21 BBO has outperformed HBBABC though the best result obtained considering 200 design variables for 

HBBABC is better than BBO. Further statistical analysis is done to analyze the differences between different algorithms using   

T-test method (Hill 1970). T-test method is used to check whether the differences between the groups of data are statistically 

significant or not. T-test value also suggest that HBBABC is statistically significant than BBO and ABC. ABC has shown 

better performance than BBO for only Griewank function , but for Sphere, Schwefel 2.22, Rosenbrock, Step, and 

Quarticperformance of ABC has increased with the number of design variables. Moreover discrete version of ABC is not so 

effective in comparison with HBBABC expect for sone results of Scwefel 1.2 and Schwefel 2.21.urther comparison of the 

algorithms is done considering two more criterions like success rate and maximum number of genera tion required to reach the 

best solution. Results are shown in Table 4. Comparison is done considering the population size of 100 and number of 

generations as 500. If the optimum result is Not Reached than it is marked as NR. A lgorithm is considered successful if the 

solution value is less than 1.0E-15 and also maximum number of generation required is counted for the same value. Out of 14 

benchmark problems HBBABC was able to find optimum solution for 10 benchmark problems which is quite better than B BO 
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(4 benchmark problems) and ABC (3 benchmark problems) also HBBABC  has shown 100% success for 9 benchmark 

problems and about 62% for Rastrigin function which is also better than BBO and ABC.  NR* indicates that though optimum 

solution has not reached but still the best solution achieved is better than other algorithms. It is also seen that with increase in 

the dimension of the problem still HBBABC is better than BBO and ABC on 12 benchmark problems. Moreover average 

number of generations required to reach the optimum solution (less than 1.0E-15) for 100 d ifferent runs was calculated and 

was rounded off in multiples of 10 ( e.g. if average number of generation equals to 147 than it is rounded off to 150). These 

rounded values of average number of generation are shown in the Table 4. It is seen from the Table 4 that HBBABC requires 

less number of generations to reach the optimum solution than BBO and ABC, which indirectly indicates that HBBABC 

requires less computational effort than BBO and ABC.Simon (2008), founder of BBO, has compared the results of BBO with 

different evolutionary algorithms such as ACO, DE, ES, GA, PBIL, PSO and SGA for 14 different benchmark problems 

considered in this paper. The results were presented for best as well as the mean solutio ns. Results show that for mean solution 

SGA is better than BBO for Griewank, Penalty 1, Penalty 2, Quart ic, Rosenbrock, Schwefel 2.26 and Step functions. For Best 

solution SGA is better for Fletcher, Griewank, Quart ic, Schwefel 1.2, Schwefel 2.21, Sphere and Step functions while ACO is 

better for Penalty 1, Penalty 2 and Schwefel 2.26. To compare HBBABC with different Evolutionary algorithms results were 

compared with the best performing optimization algorithm in comparison with BBO considering same parameters used by 

Simon (2008) (i.e population size of 50, number of generations of 50, 100 number of run s, ACO parameters and SGA 

parameters) . Results are present in Table 5 for the comparison of HBBABC with SGA and ACO. It is seen form the results 

that for the mean solution HBBABC has outperformed SGA for all the considered benchmark problems  and for the Best 

solution HBBABC has also outperformed SGA and ACO except for Penalty 1 , Penalty 2 and Schwefel 1.2 . Here it is 

interesting to note that though for Penalty 1 and Penalty 2 ACO has produced better results than HBBABC but mean results 

for ACO is poor than HBBABC which indicates that average performance of HBBABC is better than ACO. Further 

investigation is done for the convergence rate which gives the value of objective function with respect to number of 

generations. Figure 2 shows the convergence graph for some of the  benchmark problems for 100 generations. It is seen from 

the Figure 2 that convergence rate for HBBABC is better than BBO and ABC.3.2 Discrete optimization of engineering 

problemsTo check the valid ity of the proposed hybrid algorithm 5 different real-life engineering design problems with discrete 

variables is considered from the literature. All the problems considered are constrained optimization problems and so it is 

required to convert constrained optimization problem into unconstrained optimization problem. Penalty approach is used to 

change the constrained optimizat ion problem into unconstrained optimization problem. Consider an optimizat ion problem as   

  

This problem is converted in unconstrained form as   

 

                         

Where R is very large number and n is number of constraints.  

In this work one more term is added in the above equation to make sure that all the constraints are satisfied.  

 
Where R1 is also a very large number and G is the number of constraints which are not satisfied. 

 

3.2.1 Example 1: Gear Train Design 

This problem was introduced by  Pomrehn and Papalambros (1995) to minimize the total weight of the gear train. 

There are 22 discrete design variables  with three different types of discreteness. The number of teeth should be integer, 

gear/pinion shafts must be located in discrete locations, and gears are to be manufactured from four available gear b lanks.  

There are 86 inequality constraints considered for gear-tooth bending fatigue strength, gear-tooth contact strength, gear-tooth 

contact ratio, minimum pin ion size, min imum gear size, gear housing constraints, gear pitch and kinematic constraints.  The 

above problem was attempted by Khorshid and Seireg (1999) and Dolen et al. (2005).  The best solution found so far is 38.13 

cm
3
 by Khorshid and Seireg (1999).  

 

3.2.2 Example 2: Welded Stiffened Cylindrical  Shell 

This problem was introduced by Jarmai et. al. (2006) to min imize the cost of welded orthogonally stiffened 

cylindrical shell. The problem have 5 discrete design variables  with 5 inequality constraints for shell buckling, panel stiffener 

buckling, panel ring buckling and manufacturing limitations.  The best solution given by Jarmai et. al. (2006) is f*(x)=55326.3 

which is the global solution for the considered problem.  
 

3.2.3 Example 3: 10- Bar Truss Structure  

This problem is taken from Rajeev and Krishnamoorthy (1992). In these problems the objective function is to 

minimize the weight of the structure. Constraints are based on allowable stresses and deflections with 10 discrete design 

variables for each bar in the structure. The above problem was also solved by many methods such  as Improved Penalty 
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Function Method (Cai and Thiereu, 1993), Genetic Algorithms (Rajeev and Krishnamoorthy, 1992), Difference Quotient 

Method (Thong and Liu, 2001), Genetic Algorithms (Coello, 1994) and Simulated Annealing (Kripa 2004). The best result 

shown was f*(x)=5490.74 which is the global optimum solution for the problem.  

  

3.2.4 Example 4: 25- Bar Truss Structure  

This problem is also taken from Rajeev and Krishnamoorthy (1992). In these problems the objective function is to 

minimize the weight of the structure. Constraints are based on allowable stresses and deflections with 8 discrete design 

variables for d ifferent sets of  bar in the structure. The above problem is also solve by many methods such as Improved 

Penalty Function Method (Cai and Thiereu, 1993) , Genetic Algorithms (Rajeev and Krishnamoorthy, 1992), Brach and 

Bound (Zhu, 1986), Difference Quotient Method (Thong and Liu, 2001), Genet ic Algorithms (Coello, 1994), Simulated 

Annealing (Kripa 2004). The best result is equal to f*(x)=484.85  
 

3.2.5 Example 5: Multis peed Planetary Transmission 

This problem is taken from Simionescu et. al. (2006) for the teeth number synthesis of Multispeed Planetary 

Transmission. The objective function is to min imize the erro r between imposed and actual transmission ratios. There are 12 

kinemat ic constraints with 10 discrete design variables. The best global solution for the problem is f*(x)=0.526. The result 

for the above considered problems are shown in Table 6. It can be seen that for all the considered problems HBBABC has 

given global solutions. The results given by HBBABC are better than BBO and ABC in terms of mean solutions and success 

rate. Algorithm is considered to be successful if the solution has reached 99% of the global solution. Only for Example 1 

algorithm is considered successful if it gives feasible solution. For Example 1 HBBABC has given better results than reported 

in the literature.  

 

4. Conclusions 
A hybrid HBBABC algorithm using two well known algorithms viz. Biogeography Based Optimization and Artificial 

Bee colony Optimization is proposed in this work. It combined the exp loitation capacity of BBO and exp loration capacity of 

ABC. To verify the performance of the proposed method it was experimented on 14 benchmark problems considering discrete 

design variables and 5 engineering design optimization problems . Comparison of different algorithm is done considering 

different criteria such as Best solution, Mean Solution, T-test, Success rate, Average number of generations required to reach 

the optimum solution and Convergence rate. Experimental results show that the overall performance of HBBABC is better 

than BBO and ABC considering above criteria.  
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[50]. Yi-Tung K, Erwie Z (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft 
Computing 8: 849-857 

 

Table 1 Details of d ifferent hybrid algorithms  

_______________________________________________________________________ 

Hui et. al. (2010) PSO + DE 

Behnamian and Ghomi (2010) PSO + SA  

Ali et. al. (2010) PSO + Spread Sheet „Solver‟  

Wen (2010) GA + DE 

Ying (2010) ACO + DE 

Liao (2010)                      DE + Random walk 

                                                                                DE + Harmony Search  

Berna et. al. (2010)  ACO +SA 

Taher and Babak (2010) ACO + Fuzzy adaptive PSO + k-means    Algorithm 

Taher (2010) Fuzzy Adaptive PSO + Nelder–Mead simplex Search 

Yannis and Magdalene (2010) GA + PSO 

Chin and Hong (2009) GA + ACO 

Tamer et. al. (2009) Harmony Search + Spread Sheet „So lver‟  

Changsheng et. al. (2009) DE + PSO 

Guohui et l al. (2009) PSO + Tabu Search  A lgorithm 

Shahla et. al. (2009) GA + ACO 

Ali (2009) Immune + Hill climbing algorithm 

Cuneyt and Zafer (2009) GA + SA  

Jerome and Darren (2009) Covariance Matrix Adaptation Evolution  Strategy + DE + 

Backwards Ray Tracing Technique 

Xiaoxia and Lixin (2009) ACO + Scatter Search  

Behnamian et. al. (2009) ACO + SA + Vaiable Neighborhood Search (VNS) 

Vincent et. al. (2008) GA + Local Search Interior Point Method 

Yi and Erwir (2008) GA + PSO 

Fan and Zahara (2007) PSO + Simplex search  

Nourelfath et. al. (2007) ACO + Extended Great Deluge (EGD) Local Search Technique 

Jing et. al. (2007) PSO + Back Propogation Algorithm 

Dong et. al. (2007) Genetic Algorithm (GA) + Bacterial Foraging (BF)  

Karen et. al. (2006) Taguchi's method + GA  

Qian et. al. (2006) PSO + Gradient Descent (GD) Methods 

Shun and Rong (2006) GA + SA  

Pradeep and Ranjan (2005) GA + Local Optimizing Grad ient Based Algorithm 

Ling (2005) [34] GA + Neural Network Strategy 

Shu et. al. (2004) Nelder-Mead (NM) + PSO 

Victoire and Jeyakumar (2004) PSO + SQP 

Nenzi and Yan (2002)  GA + Simplex Method (SM) 

_______________________________________________________________________________ 

Table 2  

Characteristics of benchmark problems  
 

Name  Multimodal?  Separable?  Regular?   

________________________________________________________________ 

Sphere  no  yes  yes   

Schwefel 2.22  no no  no   

Schwefel 1.2  no  no  yes   

Schwefel 2.21  no  no  no   

Rosenbrock  no  no  yes   

Step  no  yes  no   

Quartic  no  yes  yes   

Schwefel 2.26  yes  yes  no   

Rastrigin  yes  yes  yes   

Ackley  yes  no  yes   

Griewank  yes  no  yes   

Penalty #1  yes  no  yes   

Penalty #2  yes  no  yes   

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4P4NPDM-2&_user=10&_coverDate=03%2F31%2F2008&_alid=1278458782&_rdoc=23&_fmt=high&_orig=search&_cdi=6646&_sort=r&_docanchor=&view=c&_ct=28998&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=39ed09a58c5699b60deafef580915f8b
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Fletcher-Powell  yes  no  no  

________________________________________________________________ 

 

Table 3  

Best results and Mean results for the benchmark problems considering discrete design variables for different d imensions . 

‘Bold value’ indicates better solution found. T-Test value is significant with 49 degree of freedom at α=0.05 by two tailed test 

_______________________________________________________________________________________________ 

                BBO              ABC          HBBABC            TTEST  

                                     __________________________________________________________________________________  

    Best Mean Best Mean Best Mean BBO             ABC- 

                                                                                                                                                                       -HBBABC

 HBBOABC 

__________________________________________________________________________________________ 
Sphere 30 1.078 2.504 3.215 7.815 0.050 0.143 23.430 29.171 

  50 15.692 20.509 18.615 22.885 3.296 4.460 13.085 16.615 

  100 45.958 61.804 27.373 40.423 7.781 9.968 17.866 13.356 

  200 117.133 149.820 59.827 80.398 19.351 22.552 16.962 15.481 

Schwefel 2.22 30 3.600 7.128 4.000 6.720 0.000 0.066 38.917 40.539 
  50 32.300 41.890 30.800 37.780 8.100 11.160 17.982 15.549 

  100 82.000 97.790 58.600 72.260 19.500 25.220 21.983 18.078 

  200 194.700 214.280 123.800 138.030 49.300 60.100 33.147 18.453 

Schwefel 1.2 30 1687 4971 5926 13556 7369 12276 -23.507 2.671 

  50 21581 30233 38196 55858 51359 75257 -7.424 -2.901 
  100 92822 113219 156135 226183 178278 228703 -7.208 -0.113 

  200 303333 355509 571897 728556 64230 440653 -0.991 2.924 

Schwefel 2.21 30 25.500 47.082 37.900 60.934 36.900 58.062 -8.525 2.559 

  50 63.900 66.868 78.800 79.914 81.500 79.874 -1.306 0.004 

  100 69.400 82.640 86.500 92.610 85.800 91.070 -3.862 1.053 
  200 88.300 92.390 94.500 96.150 94.300 96.380 -4.888 -0.423 

Rosenbrock 30 48.997 117.287 107.642 205.920 19.963 28.034 25.096 28.686 

  50 517.953 698.683 406.147 582.530 94.113 148.841 13.327 9.478 

  100 1572.754 1915.736 796.838 1001.431 237.627 311.123 16.249 11.844 
  200 3617.898 4706.759 1534.069 1857.636 559.278 668.473 17.562 20.332 

Step 30 302 912 742 2828 16.000 75.080 21.255 27.929 

  50 7304 11185 5636 7105 1460.000 2083.600 12.164 15.180 

  100 15464 22224 10566 14859 3826.000 5361.400 11.514 7.596 

  200 38448 52700 24749 29931 11132.000 13777.100 17.361 11.279 
Quartic 30 0.019 0.094 0.037 0.195 0.000 0.000 15.777 18.343 

  50 3.695 9.161 0.850 1.351 0.062 0.140 6.199 9.436 

  100 19.336 40.968 2.877 4.984 0.331 0.870 8.778 8.410 

  200 169.447 239.505 18.221 24.612 2.674 5.074 17.581 12.171 

Schwefel 2.26 30 -11138 -10749 -8907 -8258 -11963.61 -11410.21 17.710 65.308 
  50 -16262 -15778 -12171 -11514 -18411 -18016 11.659 22.303 

  100 -32854 -30841 -24535 -22835 -35535 -34632 8.903 34.811 

  200 -59440 -58118 -47483 -44980 -65880 -64368 10.302 22.015 

Rastrigin 30 18.769 35.180 90.180 129.927 16.141 30.555 4.725 56.078 

  50 144.350 159.983 467.228 536.967 96.676 147.285 1.290 26.909 
  100 355.272 398.947 1020.308 1115.391 234.206 280.601 7.932 36.907 

  200 838.478 907.235 2162.628 2353.384 458.595 541.145 20.615 61.021 

Ackley 30 6.037 8.169 7.691 16.911 0.231 1.772 58.213 36.810 

  50 10.609 12.483 19.923 19.930 5.335 6.822 14.892 50.080 

  100 12.825 13.621 19.923 19.930 6.736 8.197 18.019 46.156 
  200 13.927 14.501 19.925 19.931 7.605 8.441 27.032 70.353 

Griewank 30 3.642 9.014 2.064 5.826 1.101 1.434 25.258 19.911 

  50 53.643 72.828 25.408 39.197 8.034 13.328 11.365 6.976 

  100 155.753 211.611 67.133 80.182 29.081 35.830 18.913 12.919 

  200 385.648 484.405 127.770 161.764 86.818 113.142 19.470 4.391 
Penalty 1 30 6.024 125269 15722 1422426 0.336 1.983 1.900 5.799 

  50 767251 5781793 1342867 4503053 12.175 101.366 5.194 5.923 

  100 4319626 16831372 5053622 11357689 50.224 556.008 5.718 5.933 

  200 29233477 57270741 3980933 10125942 238.834 9106.955 6.687 6.496 

Penalty 2 30 248 362503 172745 5265971 3.573 31.627 5.919 12.768 
  50 6234168 18773181 6881823 16165647 296.413 45020.198 6.299 6.449 

  100 54117223 97087010 15026298 34967350 45358 123262 7.160 6.761 

  200 114373923 194879393 17566913 35550460 236611 727595 9.840 8.964 

Fletcher 30 24917 68364 40390 105468 4829 28120 14.217 18.507 
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  50 789748 1154052 1844496 2626204 499324 646130 6.500 9.428 

  100 3500122 4555957 10863455 12910759 2164663 2974089 5.744 20.746 

  200 16068045 20570768 45431035 53360024 9868405 14269770 5.199 16.630 
_____________________________________________________________________________________________________ 
 

Table 4 

Success rate and Average minimum number of generation required for benchmark problems considering discrete design 

variables.  ‘Bold value’ ind icates better value found. 

________________________________________________________ 

Benchmark  BBO   ABC   HBBABC 

Functions           ___________________________________________   

  SR*  AMG* SR AMG SR AMG 

________________________________________________________ 
Sphere 0.550 400 NR NR 1 110 

Schwefel 2.22 0.360 300 0.920 45 1 40 

Schwefel 1.2 NR* NR* NR NR NR NR 
Schwefel 2.21 NR* NR* NR NR NR NR 

Rosenbrock NR NR NR NR NR* NR* 

Step NR NR NR NR 1 160 

Quartic 1 180 NR NR 1 150 

Schwefel 2.26 NR NR NR NR NR* NR* 
Rastrigin 0.520 210 NR NR 0.620 350 

Ackley NR NR 0.900 350 1 50 

Griewank NR NR 1 310 1 90 

Penalty 1 NR NR NR NR 1 210 

Penalty 2 NR NR NR NR 1 220 
Fletcher NR NR NR NR NR* NR* 

_________________________________________________________ 

 

SR* Success Rate  

AMG* Average number of Maximum Generations Required 

Table 5 

Comparison of HBBABC with other optimization techniques. ‘Bold value’ indicates better value found. 

    Mean                       Best 

                      _________________________________________________________________     

  ACO SGA HBBABC ACO SGA HBBABC 

____________________________________________________________________________ 
Griewank - 7.63059 1.434 - 2.4531 1.1006 

Penalty 1 67850279.99 7.98258 1.982893 0.23161 - 0.33582 

Penalty 2 159465175.9 17083.97 31.62655 0.24281 - 3.5728 

Quartic - 0.023493 0.000479 - 0.001395 0.00005127 

Rosenbrock - 107.2454 28.03401 - - - 
Schwefel 2.26 - -8410.10 -11410.2 -3953.9 - -11963.61 

Step - 618.6 75.08 - 222 16 

Schwefel 1.2 - - - - 3484.908 7369 

Fletcher - - - - 20876.64 4829 

Sphere - - - - 0.9543 0.050393 

_____________________________________________________________________________ 

 

Table 6  

Best results , Mean results and Success rate for the engineering optimization problems considering discrete design variables.  

‘Bold value’ indicates better solution found 

___________________________________________________________________________________________________ 

  BBO   ABC   HBBABC  

       Best Mean SR* Best Mean SR Best Mean SR 

_______________________________________________________________________________________ ______________ 

Gear Train  N50G100* 6.7E+05 1.6E+08 0.00 2.0E+06 1.9E+08 0.00 46.20 1.3E+07  0.08 

 N100G100 43.64 4.6E+06 0.24 40.41 2.2E+07 0.36 35.36 52.49 1.00 

Welded Structure N50G100 55698.95 57160.11 0.04 55326.29 55980.17 0.60 55326.29 55729.30 0.72 

 N100G100 55326.29 56877.94 0.12 55326.29 55769.47 0.72 55326.29 55381.83 0.96 

10- Truss N50G100 5556.28 5776.11 0.00 5498.37 5797.23 0.16 5490.74 5594.76 0.68 

 N100G100 5559.91 5695.93 0.04 5491.72 5646.59 0.36 5490.74 5513.63 0.92 

25- Truss N50G100 494.83 510.92 0.00 484.85 489.20 0.80 484.85 484.95 1.00 

 N100G100 485.77 501.17 0.12 484.85 487.16 0.88 484.85 484.85 1.00 
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Planetary Transmission N50G100 0.527 0.629 0.04 0.536 0.556 0.00 0.526 0.536 0.48 

 N100G100 0.533 0.607 0.04 0.530 0.538 0.12 0.526 0.529 0.84 

______________________________________________________________________________________________ 

SR* Success Rate  

N50G100*   Population size = 50, Number of Generation = 100 

 

Figure 1 Species model for single habitat showing two candidate solutions (Simon , 

2008)  
 

 

Figure 2 

Convergence curve for different benchmark problems considering discrete design variables  

(a) Sphere, (b) Schwefel 2.22, (c) Rastrigin (d) Fletcher 
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