
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7

Issn 2250-3005(online) November| 2012 Page 175

A Distributed Canny Edge Detector and Its Implementation on FPGA

1,
Chandrashekar N.S.,

2,
Dr. K.R. Nataraj

1,
Department of ECE, Don Bosco Institute of Technology, Bangalore.

2,

 Department of ECE, SJB Institute of Technology, Bangalore.

Abstract
In this paper, we present a distributed Canny edge detection algorithm that results in significantly reduced

memory requirements decreased latency and increased throughput with no loss in edge detection performance as compared

to the original Canny algorithm. The new algorithm uses a low-complexity 8-bin non-uniform grad ient magnitude

histogram to compute block-based hysteresis thresholds that are used by the Canny edge detector. Furthermore, FPGA-

based hardware architecture of our proposed algorithm is presented in this paper and the architecture is synthesized on the

Xilinx Virtex 4 FPGA. The design development is done in VHDL and simulates the results in modelsim 6.3 using Xilinx

12.2.

Keywords: Canny Edge detector, Distributed Processing, Non-uniform quantization, FPGA.

1. Introduction
 Edge detection is a very important first step in many algorithms used for segmentation, tracking and image/video

coding. The Canny edge detector is predominantly used due to its ability to extract significant edges [1]. Edge detection, as

a basic operation in image processing, has been researched extensively. A lot of edge detection algor ithms, such as Robert

detector, Prewitt detector, Kirsch detector, Gauss -Laplace detector and Canny detector have been proposed. Among these

algorithms, Canny algorithm has been used widely in the field of image processing because of its good performance [2].

The Canny edge detector is predominantly used in many real -world applications due to its ability to extract significant

edges with good detection and good localizat ion performance. Unfortunately, the Canny edge detection algorithm contains

extensive pre-processing and post-processing steps and is more computationally complex than other edge detection

algorithms. Furthermore, it performs hysteresis thresholding which requires computing high and low thresholds based on

the entire image statistics. This places heavy requirements on memory and results in large latency, hindering real-time

implementation of the Canny edge detection algorithm [3]. Implementing image processing algorithms on reconfigurable

hardware min imizes the time-to-market cost, enables rapid prototyping of complex algorithms and simplifies debugging

and verification [4]. Edge detectors based on the first derivative do not guarantee to produce edge maps with continuous

edge contours nor unwanted branches. Edge detectors based on the second d erivatives, such as zero crossing; suffer from

generating erroneous edges in textured images because of its high sensitivity to noise. Being an effective edge detector

with single-p ixel response, Canny operator has been widely used in accurately abstracting the edge information in image

processing. However, taking its 4-step process into account, its real-t ime implementation based on CPU has become a

significant problem, especially for the part of the edge tracing, which consumes a large amount of computing time. To

solve the problem, GPU will be used for sake of its powerful ability of parallel processing while a new Canny operator is

proposed with the introduction of parallel breakpoints detection and edge tracing without recursive operations [5] .The

original Canny algorithm computes the higher and lower thresholds for edge detection based on the entire image statistics,

which prevents the processing of blocks independent of each other [1]. In order to reduce memory requirements, decreased

latency and increased throughput, a distributed canny edge detection algorithm is proposed in [1]. The hysteresis threshold

calculation is a key element that greatly affects the edge detection results. In [3], it is proposed a new threshold selection

algorithm based on the distribution of pixel gradients in a block of pixels to overcome the dependency between the blocks.

However, in [1], the hysteresis thresholds calculation is based on a very finely and uniformly quantized 64 -bin gradient

magnitude histogram, which is computationally expensive and thereby, hinders the real-t ime implementation. In this paper,

a method based on non-uniform and coarse quantization of the gradient magnitude histogram is proposed. In addition, the

proposed algorithm is mapped onto reconfigurable hardware architecture. The threshold is calculated using the data of the

histogram of grad ient magnitude rather than is set manually in a failure-and-try fashion and can give quite good edge

detection results without the intervening of an operator [6]. Th is improved new Canny algorithm is also implemented on

FPGA (field programmable gate array) to meet the needs of real time processing.

This paper is organized as fo llows : Section 2 gives a brief overview of the orig inal Canny edge detector

algorithm. Section 3 presents the proposed distributed Canny edge detection algorithm which includes a novel method for

the hysteresis thresholds computation based on a non-uniform quantized gradient magnitude histogram. The proposed

hardware architecture and FPGA implementation algorithm are described in Section 4. Simulation results are presented in

Section 5. A conclusion is given in Section 6.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7

Issn 2250-3005(online) November| 2012 Page 176

2. Canny Edge Detector
The popular Canny edge detector uses the following steps to find contours presents in the image. The first stage is

achieved using Gaussian smoothing. The resulting image is sen t to the PC that sends it back to the gradient filter, but here

we modified our gradient filter a bit because this time we don't only need the gradient magnitude that is given by our

previous operator, but we need separately Gx and Gy. We also need the phase or orientation of our gradient which is

obtained using the following formula:

θ = arctan

As we can see, this equation contains an arctan and a division. These operators are very difficult to implement using

hardware. We also don't need a high precision. The final θ has to give only one of the four following possible directions, as

we can see in Figure 1. The fourth direction is the horizontal d irection with zero degrees, not indicated in the figure.

Figure 1: Possible Direct ions for the Gradient Phase

Arctan and the division can be eliminated by simply comparing Gx and Gy values. If they are of similar length,

we will obtain a diagonal d irect ion, if one is at least 2.5 times longer than the other, we will obtain a horizontal o r vert ical

direction. After the edge directions are known, non-maximum suppression is applied. Nonmaximum suppression is used to

trace pixels along the gradient in the edge direction and compare the values perpendicular to the gradient. Two

perpendicular pixel values are compared with the value in the edge direction. If their value is lower than the pixel on the

edge, then they are suppressed i.e. their pixel value is changed to 0, else the higher pixel value is set as the edge and the

other two are suppressed with a pixel value of 0. Finally, hysteresis is used as a means of eliminating streaking. Streaking

is the breaking up of an edge contour caused by the operator output fluctuating above and below the threshold. If a single

threshold, T1 is applied to an image, and an edge has an average strength equal to T1, then due to noise, there will be

instances where the edge dips below the threshold. Equally it will also extend above the threshold making an edge look like

a dashed line. To avoid th is, hysteresis uses 2 thresholds, a high and a low. Any pixel in the image that has a value greater

than T1 is presumed to be an edge pixel, and is marked as such immediately. Then, any pixels that are connected to this

edge pixel and that have a value greater than T2 are also selected as edge pixels. If you think of fo llowing an edge, you

need a gradient of T2 to start but you don't stop till you hit a grad ient below T1 [7].

The original Canny algorithm [3] shown in Fig 2, consists of the following steps executed sequentially:

 Low pass filtering the image with a Gaussian mask.

 Computing horizontal and vertical gradients at each pixel location.

 Computing the gradient magnitude at each pixel location.

 Computing a higher and lower threshold based on the histogram of the grad ients of the entire image.

 Suppressing non-maximal strong (NMS) edges.

 Computing the hysteresis high and low thresholds based on the histogram of the magnitudes of the gradients of the

entire image.

 Performing hysteresis thresholding to determine the edge map.

Figure 2: Block Diagram of the Canny Edge Detection

In our implementation, the architecture is synthesized on the Xilinx VIRTEX 4 FPGA. The results show that a 16-core

architecture (3 X 3 block size fo r 256 X 256 image) leads to 16 t imes decrease in running time without performance

degradation when compared with the original frame-based Canny algorithm.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7

Issn 2250-3005(online) November| 2012 Page 177

3. Proposed Distributed Canny Edge Detection Algorithm
The superior performance of the frame-based Canny algorithm is due to the fact that it computes the gradient

thresholds by analyzing the histogram of the gradients at all the pixel locations of an image. Though it is purely based on

the statistical distribution of the gradient values, it works well on natural images which consist of a mix of smooth regions ,

texture reg ions and high-detailed reg ions [1]. Direct ly applying the frame-based Canny at a block-level would fail because

such a mix of reg ions may not be available locally in every block of the frame. Th is would lead to excessive edges in

texture reg ions and loss of significant edges in high detailed regions. The Canny edge detection algorithm operates on the

whole image and has a latency that is proportional to the size of the image. While performing the original canny algorithm

at the block-level would speed up the operations, it would result in loss of significant edges in high -detailed regions and

excessive edges in texture regions. Natural images consist of a mix of smooth regions, texture regions and high -detailed

regions and such a mix of regions may not be available locally in every block of the entire image. In [1], it is proposed a

distributed Canny edge detection algorithm, which removes the inherent dependency between the various blocks so that the

image can be d ivided into blocks and each block can be processed in parallel. The input image is div ided into m×m

overlapping blocks. The adjacent blocks overlap by (L − 1)/2 pixels for a L × L gradient mask. However, for each block,

only edges in the central n × n (where n = m + L − 1) non-overlapping reg ion are included in the final edge map. Steps 1 to

4 and Step 6 of the distributed Canny algorithm are the same as in the original Canny algorithm except that these are now

applied at the block level. Step 5, which is the hysteresis high and low thresholds calculation, is modified to enable parallel

processing. In [1], a parallel hysteresis thresholding algorithm was proposed based on the observation that a pixel with a

gradient magnitude of 2, 4 and 6 corresponds to blurred edges, psycho visually significant edges and very sharp edges,

respectively. In o rder to compute the high and low hysteresis thresholds, very finely and uniformly quantized 64-b in

gradient magnitude histograms are computed over overlapped blocks. If the 64-b in uniform d iscrete histogram is used for

the high threshold calculation, this entails performing 64 mult iplications and 64×Np comparisons, where Np is the total

number of pixels in an image. Therefore, it is necessary to find a good way to reduce the complexity of the histogram

computation. As in [6], it was observed that the largest peak in the grad ient magnitude histograms after NMS of the

Gaussian smoothed natural images occurs near the origin and corresponds to low-frequency content, while edge pixels

form a series of s maller peaks where each peak corresponds to a class of edges having similar grad ient magnitudes. The

proposed distributed thresholds selection algorithm is shown in Fig.3. Let Gt be the set of pixels with gradient magnitudes

greater than a threshold t, and let NGt for t = 2, 4, 6, be the number of corresponding gradient elements in the set Gt. Using

NGt, an intermediate classification threshold C is calculated to indicate whether the considered block is high -detailed,

moderately edged, blurred or textured, as shown in Fig.3. Consequently, the set Gt = Gt=c can be selected for computing

the high and low thresholds. The high threshold is calculated based on the histogram of the set Gc such that 20% of the total

pixels of the block would be identified as strong edges. The lower threshold is the 40% percentage of the higher threshold

as in the original Canny algorithm.

Figure 3: Pseudo-code of the proposed Distributed threshold Selection Scheme

We compared the high threshold value that is calculated using the proposed distributed algorithm based on an 8-

bin non-uniform gradient magnitude histogram with the value obtained when usin g a 16-b in non-uniform gradient

magnitude h istogram. These two h igh thresholds have similar values. Therefore, we use the 8-b in non-uniform gradient

magnitude histogram in our implementation.

4. Implementation Of The Proposed Distributed Canny Algorithm
In this section, we describe the hardware implementation of our proposed distributed canny edge detection

algorithm on the Xilinx VIRTEX 4 FPGA . We provide a h igh-level architecture diagram as follows.

Architecture: Depending on the available FPGA resources, the image needs to be partitioned into q sub-images and each

sub-image is further div ided into p m×m b locks. The proposed architecture, shown in Fig. 4, consists of q processing units

in the FPGA and some Static RAMs (SRAM) organized into q memory banks to store the image data, where q equals to

the image size divided by the SRAM size.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7

Issn 2250-3005(online) November| 2012 Page 178

Figure 4: The Architecture of the proposed Distributed Canny Algorithm

Figure 5: Block d iagram of the CE (co mpute engine) fo r the proposed Distributed Canny edge Detection

Each processing unit processes a sub-image and reads/writes data from/to the SRAM through ping-pong buffers, which are

implemented with dualport Block RAMs (BRAM) on the FPGA. As shown in Fig.4, each processing unit (PU) consists of

p computing engines (CE), where each CE detects the edge map of an m×m block image. Thus, p×q blocks can be

processed at the same t ime and the processing time for an N×N image is reduced, in the best case, by a factor of p×q. The

specific values of p and q depend on the processing time of each PE, the data loading t ime from the SRAM to the local

memory and the interface between FPGA and SRAM, such as total pins on the FPGA, the data bus width, the address bus

width and the maximum system clock of the SRAM. In our applicat ion, we choose p = 2 and q = 8. In the proposed

architecture, each CE consists of the following 6 units, as shown in Fig.5:

1. Smoothening unit using Gaussian filter.

2. Vert ical and horizontal gradient calcu lation unit.

3. Magnitude calculat ion unit.

4. Directional non-maximum suppression unit.

5. High and low threshold Calculation unit.

6. Thresholding with hysteresis unit.

5. Simulation Results And Analysis
Figure 6.shows the implementation software result and the FPGA implementation generated result. For the 256 X

256 camaramen image using the proposed distributed Canny edge detector with block size of 3 X 3 and a 3 × 3 gradient

mask. The FPGA result is obtained using ModelSim.

Figure 6: Simulation waveform for canny Edge Detection system

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7

Issn 2250-3005(online) November| 2012 Page 179

(a) (b)

Figure 7:Comparision results of 256 X 256 camaramen image (a) Original image (b) Bluring image

(a) (b)

Figure 8: Comparision results of 256 X 256 camaramen image (a) orig inal image and (b)Edge map image

6. Conclusion
We proposed a novel nonuniform quantized histogram calcu lation method in order to reduce the computational

cost of the hysteresis threshold selection. As a result, the computational cost of the proposed algorithm is very low

compared to the orig inal Canny edge detection algorithm. The algorithm is mapped to onto a Xilinx Virtex-4 FPGA

platform and tested using ModelSim. It is capable of supporting fast real-time edge detection for images and videos with

various spatial and temporal resolutions including fu ll-HD content. For a 100 MHz clock rate, the total processing running

time using the FPGA implementation is 0.655 ms for a 256 X 256 image.

References
[1] S. Varadarajan, C. Chakrabart i, L. J. Karam, and J. M.Bauza, “A Distributed psycho-visually motivated canny edge

detector,” IEEE ICASSP, pp. 822 –825, Mar. 2010.

[2] L. Torres, M. Robert, E. Bourennane, and M. Paindavoine, “Implementation of a recursive real time edge detector

using Retiming techniques,” VLSI, pp. 811 –816, Aug. 1995.

[3] Qian Xu, Chaitali Chakrabart i and Lina J. Karam, “A Distributed Canny Edge Detector and Its Implementation On

FPGA”, Tempe, AZ.

[4] D. V. Rao and M. Venkatesan, “An efficient reconfigurable Architecture and implementation of edge detection

algorithm Using Handle-C,” ITCC, vol. 2, pp. 843 – 847, Apr. 2004.

[5] Shengxiao Niu, Jingjing Yang, Sheng Wang, Gengsheng Chen,”Improvement and Parallel Implementation of

Canny Edge Detection Algorithm Based on GPU”.

[6] W. He and K. Yuan, “An improved Canny edge detector and its Realization on FPGA,” WCICA, pp. 6561 –6564,

Jun. 2008.

[7] J. Canny, “A computational approach to edge detection,”IEEE Trans. PAMI, vol. 8, no. 6, pp. 679 –698, Nov.

1986.

