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Abstract— promoter is a specific region of DNA that 

facilitates the transcription of a particular gene. Promoters are 
typically located near the genes they regulate, on the same strand 
and upstream (towards the 5′ region of the sense strand). 
Promoters contain specific DNA sequences and response elements 
which provide binding sites for RNA polymerase and for proteins 
called transcription factors that recruit RNA polymerase. 
Promoter prediction programs (ppps) are computational models 
which aim at identifying the promoter regions in a genome. The 

main approaches of the promoter prediction are either assigning 
scores to all single nucleotides to identify TSS or identifying a 
promoter region without providing scores to all nucleotides. In 
this project n-gram features are extracted and used in promoter 
prediction. Here a systematic study is made to discover the 
efficacy of n-grams (n=2, 3, 4, 5) as features in promoter 
prediction problem. Neural network classifiers with these n-grams 
as features are used to identify promoters in a human genome. In 

this case for n=4 we are getting optimal values. 

  
Keywords—Biological data sets, machine learning method, 

neural networks, in silico method for promoter prediction, Binary 
classification, cascaded classifiers. 

 

I. Introduction 
Promoter recognition is a real problem that computationally 
identifies the transcription start site (TSS) or the 5’end of the gene 
without time-consuming and expensive experimental methods that 
align ESTs, cDNAs or mRNAs against to the entire genome. In 

this article, we focus on humans because it is a representative 
species that has attracted much more attention in the past decade. 
In humans, the TSS is surrounded with a core-promoter region 
within around ±100 base pairs (bp). A proximal promoter region 
has several hundreds bp immediately upstream of the core 
promoter. The capacity of transcription factors (TFs) to activate 
gene expression is encoded in both the core and proximal 
promoters, which are composed of short regulatory elements that 

function as transcription factor binding sites (TFBSs) for specific 
TFs to control and regulate the transcription initiation of the gene. 
Therefore, the rich information encoded in promoters is crucial to 
locate the accurate position of the TSS. Figure1. Shows a 
schematic representation of the locations of the promoter region, 
TFBSs, TSS, 5’ UTR, exons, introns and 30 UTR. So far, high-
resolution promoter recognition algorithms have at least two 
important motivations. First, they can improve the genome 

annotation when the experimental support of ESTs, cDNAs or 
mRNAs is not available. Second, they can efficiently narrow 
down the regions in transcriptional regulation for inspiring further  
 
 
 
 
 

 

 
 
 

Experimental work because the computational approach is much 
cheaper. 

 
Figure 1: A schematic representation of the locations of the promoter 

region, TFBSs, exons, introns and 3′utr regions. 

 
Available promoter prediction systems use two types of features 
for classification namely, context features like nmers, and signal 
features such as TATA-box, CCAAT-box, and CpG islands. 
Among the favorable promoter prediction programs, Eponine [1] 

builds a PWM to detect TATA-box and G+C enrichment regions 
as promoter-like regions; FirstEF [2] uses CpG-related and non-
CpG related first exons as signal features; Promoter Inspector [3] 

uses IUPAC words with wildcards as context features. Good 
experiment results are achieved by integrating these two types of 
features. DPF [4] applies a separate module on G+C rich and G+C 
poor regions, and selects 256 pentamers to generate a PWM for 
prediction. Furthermore, DragonGSF [5, 6] adds the CpG-island 
feature to DPF. 

Most of the promoter prediction programs try to predict 
the exact location of the promoter region of the known protein-

coding genes, while some focus on finding the transcription start 
site (TSS). Some research has show that there is often no single 
TSS, but rather a whole transcription start region (TSR) 
containing multiple TSSs that are used with different frequencies. 
Generally two main approaches are used in promoter prediction 
[7]. 

1. First approach assigns scores to all single nucleotides 
to Identify TSS. 

2. Second approach identifies a promoter region without 
providing scores for all nucleotides. 

In this article analyzes the performance of 17 programs 
on two tasks: Genome wide identification of the start of genes and 
Genome wide identification of TSRs. In Existing methods 
Promoter prediction programs DragonGSF predicts the value of 
precision is between 37-48% and recall is 51-70%, DragonPF 
predicts the value of precision is between 61-65% and recall 62-

64%, FristEF predicts the value of precision is 79-81% and recall 
35-40%, Eponine predicts the value of precision is ≈ 40 and recall 
≈ 67%, NNPP2.2 predicts the value of precision is 69-93% and 
recall 2.0-4.5%, McPromoter2.0 predicts the value of precision is 
26-57%and recall ≈ 4.5, proSom predicts the value of precision is 
0.38% and recall 0.66% [8]. 
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We select the 13 representative PPPs that can analyze large 

genome sequences and report strand-specific TSS predictions. 
ARTS, Eponine used SVM as the part of their design, EP3, 
Promoter scan, Wu-method used Position weight matrix (PWM). 
CpGcluster used distance based algorithm. CpGProD used linear 
discriminating analysis (LDA). DragonGSF, DragonPF, 
McPromoter used neural networks.NNPP2.2 has used Time Delay 
neural network. Promoter Explorer has used AbaBoost algorithm. 
proSOM has used SOM. These programs have used as features 

various aspects of promoter and other regions of the DNA [6]. 
There are three classification methods for human promoter 
recognition system [9]. 

• Discriminative model that finds the optimal thresholds 
or classification boundaries in the signal, context and structure 
features space. Typical methods include artificial neural networks 
(ANNs), discriminate functions and support vector machines 
(SVMs). 

• Generative model that describes the generative process 
of signal, context and structure observations. Position weight 
matrix (PWM), nearest neighborhood and hidden Markov models 
(HMMs) belong to generative models. 

• Ensemble that combines multiple classifiers for 
multiple features in order to achieve a consensus and robust 
recognition results. 

Promoter Inspector is a program that predicts eukaryotic 

poly II promoter regions with high specificity in mammalian 
genomic sequences. The program Promoter Inspector focuses on 
the genomic context of promoters rather than their exact location. 
Promoter Inspector is based (refer table 2.3) on three classifiers, 
which specialize in to differentiating between promoter region 
and a subset of non-promoter sequences (intron, exon and 3′utr). 
In contrast to this, PromnFD and PromFind use only one 
classifier, i.e the features are extracted from one promoter set and 
one set of various non-promoter sequences. To compare the two 

approaches, two versions of Promoter Inspector are built. Version 
v1 was based on one st of mixed non-promoter sequences, while 
version v2 was built on the basis of exon, intron and 3′utr. Both 
versions of promoter Inspector were applied to exon, intron, 3′utr 
and promoter evaluation sets [3]. The identification of promoters 
and first exons has been one of the most difficult problems in 
gene-finding. The FirstEF [2] program identifies a promoter 
region and first exons in the human genome, which may be also 

be useful for the annotation of other mammalian genomes. 
FirstEF consists of different discriminate functions structured as a 
decision tree. The probabilistic models are designed to find 
potential first splice donor sites and CpGrelated and non-CpG-
related promoter regions based on discriminant analysis. For 
every potential first splice-donor site and upstream promoter 
region, FirstEF decides whether the intermediate region could be 
a potential first exon based on a set of quadratic discriminant 

functions. Training and testing using different discriminant 
functions, the first exons and promoter regions from the first-exon 
database are used. Ramana et al. have also tried to identify the 
promoters as well as first exons of human species by using an 
algorithm called FirstEF which is based upon the usage of 
structural and compositional features [3]. They were able to 
predict 86% of the first exons. They have compared their method 
with Promoter Inspector and obtained a sensitivity of 70% 

compared to Promoter Inspector’s 48%. Bajic et al. termed that 
the prediction is positive if the predicted transcription start site 
(TSS) falls within a maximum allowed distance from the 
reference transcription start site [5]. They have assessed 
performance of some of the prediction algorithms based on the 
performance measures such as sensitivity and positive predictive 
value. In their later paper they concluded that the promoter 

prediction combined with gene prediction yields a better 

recognition rate [6].  
 

ExonType Sensitivity  Specificity correlation 

coefficient 

CpG-related 0.92 0.97 0.94 

NotCpG-
related 

0.74 0.60 0.65 

all exons 0.86 0.83 0.83 
Table 1.Accuracy of FirstEF based on cross-validation 

 

PCA-HPR is used to locate eukaryotic promoter regions and 
predict transcription start sites (TSSs). Here the authors have 
computed codon (3-mer) and pentamer (5-mer) frequencies and 
created codon and pentamer frequency feature matrices to extract 
informative and discriminative features for effective 
classification. Principal component analysis (PCA) is applied to 

the feature matrices and a subset of principal components (PCs) 
are selected for classification. They used three neural network 
classifiers to distinguish promoters versus exons, promoters 
versus introns, and promoters versus 3’ un-translated region 
(3’UTR). These are compared with three well known existing 
promoter prediction systems such as DragonGSF, Eponine and 
FirstEF. Validation shows that PCA-HPR achieves the best 
performance with three test sets for all the four predictive 

systems. 
 

 
Program True 

Positive 

False 

Positive 

Sensitivity (%) PPV(%) 

DragonGSF 9 14 64.2 39.1 

FirstEF 9 12 64.2 42.9 

Eponine 9 16 64.2 36.0 

PCA-HPR 9 11 64.2 45.0 

Table 2.Performance comparison of four prediction systems for four 

human genes. 

 
Program True 

Positive 

False 

Positive 

Sensitivity (%) PPV (%) 

DragonGSF 269 69 68.4  79.6 

FirstEF 331 501 84.2  39.8 

Eponine 199 79 50.6  71.6 

PCA-HPR 301 65 76.6  82.2 

Table 3.Performance comparison of four prediction systems for 22 

chromosomes. 

 
Promoter prediction systems use two types of features 

for classification namely, context features like n-mers, and signal 
features such as TATA box, CCAAT-box and CpG islands. 
Among the favorable promoter prediction programs, Eponine 
builds a PWM to detect TATA-box and G+C enrichment regions 
as promoter-like regions; FirstEF uses CpGrelated and non-CpG 
related first exons as signal features; Promoter Inspector uses 
IUPAC words with wild cards as context features. Good 

experiment results are achieved by integrating these two types’ 
features. DPF applies a separate module on G+C rich and G+C 
poor regions, and selects 256 pentamers to generate a PWM for 
prediction. Furthermore, DragonGSF adds the CpG-island feature 
to DPF. Jia Zeng et al. in their paper selected three promoter 
systems DragonGSF, Eponine and FirstEF to compare the 
performance on test set 1. A promoter region is counted as a true 
positive (TP) if TSS is located within the region, or if a region 

boundary is within 200bp 5′ of such a TSS. Otherwise the 
predicted region is counted as a false positive (FP). The test 
results of Eponine and FirstEF. On test set 2, we adopt the same 
evaluation method as DragonGSF when one or more predictions 
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fall in the region of [2000, +2000] relative to a TSS, a TP is 

counted. All predictions which fall on the annotated part of the 
gene in the region are counted as FP [10]. Sobha.et.al is termed 
that n-gram based promoter recognition methods were tried in 
promoter prediction and its application to whole genome promoter 
prediction in E.coli and Drosophila [11].Here we extending the 
earlier work by extracting n-grams and using them to identify 
promoters in human genome. Patterns or features that characterize 
a promoter/non-promoter are needed to be extracted from the 

given set of promoter and non-promoter sequences. Here 
promoter recognition is addressed by looking at the global signal 
characterized by their frequency of occurrence of n-grams in the 
promoter region. 
  

II. Introduction to N-Grams as features 
Promoter recognition is tackled using various 

techniques such as support vector machines (SVM) [12], neural 
networks [13, 14], hidden Markov models [15], position weight 
matrix (PWM) [16], to expectation and maximization (EM) 
algorithm [17]. These techniques are based on basically motifs 
present in the promoter which are specific regions in the promoter 

or the global signal that is present in the promoter. To extract the 
local or global signals various feature extraction methods are 
used. 

Condon usage patterns in coding regions and hexamer 
conservation (TATA box, CAAT box) in promoter regions is well 
known. Techniques that use these concepts are available in 
abundance in literature. Most of the local content-based methods 
are in fact based on conservation of the hexamers [13,16]. In 

literature there are a few articles on protein sequence 
classification and gene identification using n-grams, but very few 
on promoter recognition. An n-gram is a selection of n contiguous 
characters from a given character stream [18]. Ohler et al. have 
used interpolated Markov chains on human and Drosophila 
promoter sequences as positive data set achieving a performance 
accuracy of 53% [19]. Ben-gal et al. have used a variable-order 
Bayesian network which looks at the statistical dependencies 

between adjacent base pairs to achieve a true positive recognition 
rate of 47.56% [20]. Leu et al. have developed a vertebrate 
promoter prediction system with cluster computing extracting n-
grams for n = 6 to 20 [21]. They achieved an accuracy rate of 
88%. Ji et al. have used SVM and n-grams (n = 4, 5, 6, 7) for 
target gene prediction of Arabidopsis [22]. Prediction system with 
cluster computing extracting n-grams for n = 6 to 20 [21]. They 
achieved an accuracy rate of 88%. Ji et al. have used SVM and n-

grams (n = 4, 5, 6, 7) for target gene prediction of Arabidopsis 
[22]. There are position specific n-gram methods by Wang et al. 
and Li et al. [23, 24]. Wang et al. have proposed a position 
specific propensity analysis model (PSPA) which extracts the 
propensity of DNA elements at a particular position and their co-
occurrence with respect to TSS in mammals. They have 
considered a set of top ranking k-mers (k = 1 to 5) at each position 
±100 bp relative to TSS and the co-occurrence with other top 
ranking k-mers at other downstream positions. PSPA score for a 

sequence is computed as the product of scores for the 200 
positions of ±100 bp relative to TSS. They found many position-
specific promoter elements that are strongly linked to gene 
product function. Li et al. too have considered position-specific 
weight matrices of hexamers at some ten specific positions for the 
promoter data of E. coli [24].  
 

Here, we extract n-grams to be used as features. An 

investigation of the lower order n-grams for promoter recognition 
was taken up in order to assess their applicability in whole 

genome promoter recognition. To this end we have extracted the 

n-grams and fed them to a multi-layer feed-forward neural 
network. Further, by using the best features, two more neural 
networks are designed to annotate the promoters in a genome 
segment. In the following sections, we explain the extraction of 
features, the classification results using these features, and a way 
of finding the promoters in an unknown segment of the Human 
genome. 

 

Feature Extraction 
In this section, different data sets that are used in 

experimentation and the feature extraction method for various n-

grams are described. 
 

Data set 
In this project we are using three benchmark data sets. 

These are generated in collaboration between the Informatics 
group of the Berkeley Drosophila Genome project at the 
Lawrence Berkeley National Laboratory (LBNL), the 
Computational Biology Group at the UC Santa Cruz, the 
Mathematics Department at Stanford and the Chair for Pattern 
Recognition at the University of Erlangen, Germany. These 

databases contain three data sets. Those are DBTSS, EID, 
3′UTR.The training set in this experiment is divided into several 
subsets of promoters, introns, exons and 3′UTR sequences. In 
these data sets DBTSS, EPD are the promoter data sets and 
Exons, Introns (from EID) and 3′UTR are non-promoter data sets. 
From DBTSS we have extracted promoter sequences [-250, +50] 
bp around the experimental TSS. DBTSS contains 24 
chromosomes; each chromosome has 1000 nucleotide sequences. 
From EID and 3′UTR we have extracted non-promoter sequences 

of length 300 bp [27].  
 

Method 
Patterns or features that characterize a promoter/non-

promoter are needed to be extracted from the given set of 
promoter and non-promoter sequences. Here promoter recognition 
is addressed by looking at the global signal characterized by the 
frequency of occurrence of n-grams in the promoter region. We 
show in the section Neural network architecture and classification 
performance that these features perform well for prokaryotic as 

well as eukaryotic promoter recognition. To extract the global 
signal for a promoter, the frequency of occurrence of n-grams is 
calculated on the DNA alphabet {A, T, G, C}. The set of n-grams 
for n = 2 is 16 possible pairs such as AA, AT, AG, AC, TA, etc. 
and the set of n-grams for n = 3 are 64 triples such as AAA, AAT, 
AAG, AAC, ATA etc. Similarly n-grams for n = 4, 5, 6 are 
calculated. Let fi

n denote the frequency of occurrence of the i-th 
feature of n-gram for a particular n value and let |L| denote the 

length of the sequence. The feature values Vi
n are normalized 

frequency counts given in Eq. (1). 
 

 Vi
n   

=           fi
n 

                        |L| - (n-1)   , 1≤ i ≤ 4n   for n=2, 3, 4, 5    (1) 

 
Here, the denominator denotes the number of n-grams that are 
possible in a sequence of length |L| and hence Vi

n denotes the 
proportional frequency of occurrence of i-th feature for a 
particular n value. Thus each promoter and non-promoter 
sequence of the data set is represented as a 16-dimensional feature 
Vector (V1

2
, V2

2
, V3

2
, ……… V16

2
) for n=2, as a 64-dimensional 

feature vector (V1
3
, V2

3
, V3

3
, ……… V64

3
) for n=3, as a 256 

dimensional feature vector (V1
4
, V2

4
, V3

4
, ……… V256

4
) for n=4, 
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and a 1024-dimensional feature vector (V1
5
, V2

5
, V3

5
, …… V1024

5
) 

for n=5. 
 

 
Fig.1. Average separation between promoters and non-promoters for n = 2 

for Homo sapiens. Here, 1. . .16 represent AA, AT, AG, AC etc. 

 

 In a binary classification problem, the training set will be a 
mixture of both positive and negative data sets. Similarly the test 
set which consists of both positive and negative data is used to 

evaluate the performance of the classifier. A neural network 
classifier is trained using the n-grams of the training set as input 
feature vectors and then the test set is evaluated using the same 
network. Figures 1–4 depict the average separation between the 
positive and negative data for n = 2, n = 3, n = 4 and n = 5, 
respectively. It can be observed that the plots depict the 
separability of promoter and non-promoter data sets in different 
feature spaces. 

 

III. Neural Network Architecture and 

Classification Performance 
A feed-forward neural network with three layers, 

namely, an input layer, one hidden and an output layer is used for 
promoter classification. The number of nodes in the input layer is 
16, 64, 256, 1024 features for n = 2, 3, 4, 5 respectively. One 

more experimentation which uses Euclidean distance measure to 
reduce the number of features of n = 5 is done. Experimentation is 
done with different number of hidden nodes that give an optimal 
classification performance. The output layer has one node to give 
a binary decision as to whether the given input sequence is a 
promoter or non-promoter. 5-fold cross-validation [25] is used to 
investigate the effect of various n-grams on promoter 
classification by neural network. Average performance over these 

folds is being reported. These simulations are done using Stuttgart 
Neural Network Simulator [26]. 
 

S.

No 

Features Precision Specificity Sensitivity PPV 

1 N=2 gram 68.47  84.05 67.36 83.51 

2 N=3gram 70.86 81.923 63.94 84.89 

3 N=4gram 72.42 86.51 84.38 89.24 

4 N=5gram 76.56 69.44 80.85 81.54 

Table 4. Homo sapiens classification results for different n-grams 
(average of 5-fold cross validation experiments) 

 
A feed forward neural network with three layers is used for 
promoter classification. The nodes in the input layer are 16, 64, 

256, 1024 features for n=2, 3, 4, 5 respectively. The 
experimentation is done with different number of hidden nodes 
that give an optimal classification performance. The output layer 
has one node to give a binary decision as to whether the given 
input sequence is a promoter or non-promoter. 5-fold cross 

validation is used to investigate the effect of various n-grams on 

promoter classification by neural network. Average performance 
over these folds is being reported. These simulations are using 
Stuttgart Neural Network Simulator (SNNS). The classification 
results are evaluated using performance measures such as 
Precision, Specification, Sensitivity 5.3, 5.4 given these results. 
Using these, we would like to find out the efficacy of these 
features in identifying promoter in human genome [2]. 
 

 
       Fig. 2. Average separation between promoter and non promoter for 

n=3. Here 0...64 represent the AAA, AAT, AAG, AAC...etc 

 
        Figure.3: Average separation between promoter and non promoter for 

n=4. Here 0...256 represent the AAAA, AAAT, AAAG, AAAC...etc                                

 

n-gram Precision Specificity Sensitivity PPV 

3-gram 82.07  82.86 78.06 83.75 

4-gram 82.51  84.95 78.64 85.51 

Table 5. Homo sapiens classification results for different n-grams for 

reduced data set (average of 5-fold cross-validation experiments) 

 
The classification results are evaluated using performance 

measures such as precision, specificity and sensitivity. Specificity 
is the proportion of the negative test sequences that are correctly 
classified and sensitivity is the proportion of the positive test 
sequences that are correctly classified. Precision is the proportion 
of the correctly classified sequences of the entire test data set.  
 

 
Fig.4. Average separation between promoter and non promoter for n = 5. 

Here 0...1024 represent the AAAAA, AAAAT, AAAAG, AAAAC...Etc 
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Positive predictive value is defined as the proportion of true 

positives to the sum of true positives and false positives. False 
positives are negatives which are classified as positives. The 
classification results for various n-grams for Homo sapiens 
presented in Tables 4 and 5 respectively.  
 

Discussion and Conclusions 

 
In proposed approach human promoters are classified 

using a neural network classifier. Since the optimal features are 
not known we started classification model with minimum number 
of features n=2 and incrementally increased to maximum number 

of features. The features are given as input to a single layer feed 
forward neural network. Back propagation momentum learning 
algorithm using is used for training of the neural network. 
Algorithm parameters are: i) learn rate ii) momentum term iii) 
Flat spot elimination and iv) Maximum ignored errors. 
Different numbers of feature values are used to arrive at the best 
performance. Test results are measured using measures such as 
precision, specificity and sensitivity and PPV. Maximum accuracy 
achieved using SNNS is 89.2% in the case of DBTSS data set. 

In this Paper, we focus on extracting the statistical features. There 
is evidence of a statistical preference in terms of codon usage 
patterns in protein coding regions. The majority of promoter 
prediction methods available now directly extract a limited 
number of context features from sequences. Here we are not doing 
any feature selection and using the entire set of n-grams. In this 
paper Classification of both promoter (DBTSS data set) and non-
promoter is best for n=4. We obtained a precision of 72.42%, 

specificity of 86.5%, and sensitivity of 84.3% and positive 
predictive value of 89.2% for this set. The result shows that for 
DBTSS n=4 gram features give the better performance than other 
n-grams. The results here consolidate the results obtained for 
Drosophila Melanogaster in the work done by Sobha et al. They 
obtained best performance results for n=4. Does this then make 4-
grams as a special parameter for the eukaryotes is needed to be 
further investigated? 

A study of the n-gram (n=2, 3, 4, 5) as features for a binary neural 
network classifier is done. In human genome 4-gram features give 
an optimal performance with neural network classifier. The results 
show that the classification result 4-gram is better in identification 
of the promoter than the other n-grams. Human promoter 
classification gives the better accuracy results of 89.2%. 
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