
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 139

Caching Strategies Based on Information Density Estimation in Wireless

Ad Hoc Networks

1
D.Nagaraju,

2
L.Srinivasa rao,

3
K.Nageswara Rao

123
Sathupally MIST Khammam, Andhra Pradesh, India

Abstract:
We address cooperative caching in wireless networks, where the nodes may be mobile and exchange information in a peer-to-

peer fashion. We consider both cases of nodes with largeand small-sized caches. For large-sized caches, we devise a strategy

where nodes, independent of each other, decide whether to cache some content and for how long. In the case of small-sized

caches, we aim to design a content replacement strategy that allows nodes to successfully store newly received information

while maintaining the good performance of the content distribution system. Under both conditions, each node takes decisions

according to its perception of what nearby users may store in their caches and with the aim of differentiating its own cache

content from the other nodes’. The result is the creation of content diversity within the nodes neighborhood so that a

requesting user likely finds the desired information nearby. We simulate our caching algorithms in different ad hoc network

scenarios and compare them with other caching schemes, showing that our solution succeeds in creating the desired content

diversity, thus leading to a resource-efficient information access.

Index Terms— Data caching, mobile ad hoc networks.

I. Introduction
PROVIDING information to users on the move is one of

the most promising directions of the infotainment

business, which rapidly becomes a market reality, because

infotainment modules are deployed on cars and handheld

devices. The ubiquity and ease of access of third- and

fourth-generation (3G or 4G) networks will encourage

users to constantly look for content that matches their

interests. However, by exclusively relying on

downloading from the infrastructure, novel applications

such as mobile multimedia are likely to overload the

wireless network (as recently happened to AT&T

following the introduction of the iPhone [1]). It is thus

conceivable that a peer-to-peer system could come in

handy, if used in conjunction with cellular networks, to

promote content sharing using ad hoc networking among

mobile users [2]. For highly popular content, peer-to-peer

distribution can, indeed, remove

• Large-sized caches.

In this case, nodes can potentially store a large portion

(i.e., up to 50%) of the available information items.

Reduced memory usage is a desirable (if not required)

condition, because the same memory may be shared by

different services and applications that run at nodes. In

such a scenario, a caching decision consists of computing

for how long a given content should be stored by a node

that has previously requested it, with the goal of

minimizing the memory usage without affecting the

overall information retrieval performance;

• Small-sized caches.

In this case, nodes have a dedicated but limited amount of

memory where to store a small percentage (i.e., up to

10%) of the data that they retrieve. The caching decision

translates into a cache replacement strategy that selects

The information items to be dropped among the

information items just received and the information items

that already fill up the dedicated memory. We evaluate

the performance of Hamlet in different mobile network

scenarios, where nodes communicate through ad hoc

connectivity. The results show that our solution ensures a

high query resolution ratio while maintaining the traffic

load very low, even for scarcely popular content, and

consistently along different network connectivity and

mobility scenarios.

A. Cooperative Caching

Distributed caching strategies for ad hoc networks are

presented according to which nodes may cache highly

popular content that passes by or record the data path and

use it to redirect future requests. Among the schemes

presented in [9], the approach called Hybrid Cache best

matches the operation and system assumptions that we

consider; we thus employ it as a benchmark for Hamlet in

our comparative evaluation. In [10], a cooperative

caching technique is presented and shown to provide

better performance than Hybrid Cache. However, the

solution that was proposed is based on the formation of an

overlay network composed of ―mediator‖ nodes, and it is

only fitted to static connected networks with stable links

among nodes. These assumptions, along with the

significant communication overhead needed to elect

―mediator‖ nodes, make this scheme unsuitable for the

mobile environments that we address. The work in [11]

proposes a complete framework for information retrieval

and caching in mobile ad hoc networks, and it is built on

an underlying routing protocol and requires the manual

setting of a networkwide ―cooperation zone‖ parameter.

Note that assuming the presence of a routing protocol can

prevent the adoption of the scheme in [11] in highly

mobile networks, where maintaining network connectivity

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 140

is either impossible or more communication expensive

than the querying/ caching process. Furthermore, the need

of a manual calibration of the ―cooperation zone‖ makes

the scheme hard to configure, because different

environments are considered. Conversely, Hamlet is self

contained and is designed to self adapt to network

environments with different mobility and connectivity

features. One vehicular ad hoc network scenario is

addressed in [12], where the authors propose both an

information retrieval technique that aims at finding the

most popular and relevant data matching a user query and

a popularity-aware data replacement scheme. The latter

approach ensures that the density of different content is

proportional to the content’s popularity at the system

steady state, thus obeying the square-root rule proposed in

[13] for wired networks. We point out that the square-root

rule does not consider where copies of the data are located

but only how many copies are created. It is thus

insufficient in network environments whose dynamism

makes the positioning of content of fundamental

importance and renders steady-state conditions (as

assumed in [13]) hard to be achieved.

B. Content Diversity

Similar to Hamlet, in [6], mobile nodes cache data items

other than their neighbors to improve data accessibility. In

particular, the solution in [6] aims at caching copies of the

same content farther than a given number of hops. Such a

scheme, however, requires the maintenance of a

consistent state among nodes and is unsuitable for mobile

network topologies. The concept of caching different

content within a neighborhood is also exploited in [7],

where nodes with similar interests and mobility patterns

are grouped together to improve the cache hit rate, and in

[8], where neighboring mobile nodes implement a

cooperative cache replacement strategy. In both works,

the caching management is based on instantaneous

feedback from the neighboring nodes, which requires

additional messages. The estimation of the content

presence that we propose, instead, avoids such

communication overhead.

C. Caching With Limited Storage Capability

In the presence of small-sized caches, a cache

replacement technique needs to be implemented. Aside

from the scheme in [8], centralized and distributed

solutions to the cache placement problem, which aim at

minimizing data access costs when network nodes have

limited storage capacity, are presented in [14]. Although

centralized solutions are not feasible in ad hoc

environments, the distributed scheme in [14] makes use of

cache tables, which, in mobile networks, need to be

maintained similar to routing tables. Hamlet does not rely

on cache tables, and thus, it does not incur the associate

high communication penalty. In [15], a content

replacement strategy that aims at minimizing energy

consumption is proposed. To determine which content

should be discarded, the solution exploits the knowledge

of data access probabilities and distance from the closest

provider—an information that is typically hard to obtain

and is not required by Hamlet. A content replacement

scheme that addresses storage limitations is also proposed

in [6]. It employs a variant of the last recently used (LRU)

technique, which favors the storage of the most popular

items instead of the uniform content distribution targeted

by Hamlet. In addition, it exploits the cached item IDs

provided by the middleware to decide on whether to reply

to passing-by queries at the network layer, as well as link-

layer traffic monitoring to trigger prefetching and

caching. In [17], the popularity of content is taken into

account, along with its update rate, so that items that are

more frequently updated are more likely to be discarded.

Similarly, in [18], cache replacement is driven by several

factors, including access probability, update frequency,

and retrieval delay. These solutions thus jointly address

cache replacement and consistency, whereas in this paper,

we specifically target the former issue. However, as will

be pointed out, Hamlet can easily be coupled with a

dedicated cache consistency scheme, e.g., [9] and [12].

2196 IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

D. Data Replication

Although addressing a different problem, some

approaches to data replication are relevant to the data

caching solution that we propose. One technique of

eliminating information replicas among neighboring

nodes is introduced in [` 11], which, unlike Hamlet,

requires knowledge of the information access frequency

and periodic transmission of control messages to

coordinate the nodes’ caching decisions. In [5], the

authors propose a replication scheme that aims at having

every node close to a copy of the information and analyze

its convergence time. However, unlike Hamlet, the

scheme implies a significant overhead and an exceedingly

high convergence time, thus making it unsuitable for

highly variable networks. Finally, the work in [22] adopts

a cross-layer approach to data replication in mobile ad

hoc networks, where network-layer information on

the node movement path helps to trigger the replication

before network partitioning occurs.

Iii. System Outline and Assumptions
Hamlet is a fully distributed caching strategy for wireless

ad hoc networks whose nodes exchange information items

in a peer-to-peer fashion. In particular, we address a

mobile ad hoc network whose nodes may be resource-

constrained devices, pedestrian users, or vehicles on city

roads. Each node runs an application to request and,

possibly, cache desired information items. Nodes in the

network retrieve information items from other users that

temporarily cache (part of) the requested items or from

one or more gateway nodes, which can store content or

quickly fetch it from the Internet. We assume a content

distribution system where the following assumptions

hold:

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 141

1) A number I of information items is available to the

users, with each item divided into a number C of chunks;

 2) user nodes can overhear queries for content and

relative responses within their radio proximity by

exploiting the broadcast nature of the wireless medium;

and

3) user nodes can estimate their distance in hops from the

query source and the responding node due to a hop-count

field in the messages.

Although Hamlet can work with any system that

satisfies the aforementioned three generic assumptions,

for concreteness, we detail the features of the specific

content retrieval system that we will consider in the

emainder of this paper. The reference system that we

assume allows user applications to request an information

item i (1 ≤ i ≤ I) that is not in their cache. Upon a request

generation, the node broadcasts a query message for the C

chunks of the information item. Queries for still missing

chunks are periodically issued until either the information

item is fully retrieved or a timeout expires. If a node

receives a fresh query that contains a request for

information i’s chunks and it caches a copy of one or

more of the requested chunks, it sends them back to the

requesting node through information messages. If the

node does not cache (all of) the requested chunks, it can

rebroadcast a query for the missing chunks, thus acting as

a forwarder. The exact algorithm that is followed by a

node upon the reception of a query message is detailed in

the flowchart in Fig. 1

(a). Fig. 1. Flowcharts of the processing of (a) query and

(b) information messages at user nodes.We denote the

address of the node that generated the query as asrc, the

query identifier as id, the address of the last node that

forwarded the query message as alast, and the set of

queried chunks as ¯c. The functional blocks that are the

focus of this paper are highlighted in

(b). Once created, an information message is sent back to

the query source. To avoid a proliferation of information

copies along the path, the only node that is entitled to

cache a new copy of the information is the node that

issued the query. Information messages are transmitted

back to the source of the request in a unicast fashion,

along the same path from which the request came. To this

end, backtracking information is carried and updated in

query messages. Nodes along the way either act as relays

for transit messages (if they belong to the backtracking

node sequence) or simply overhear their transmission

without relaying them. Fig. 1(b) depicts the flowchart of

the operations at a node that receives a message that

contains an information chunk. A node that receives the

requested information has the option to cache the

received content and thus become a provider for that

content to the other nodes. Determining a strategy of

taking such caching decisions is the main objective of this

paper, and as such, the corresponding decision blocks are

highlighted in Fig. 1(b).

We point out that Hamlet exploits the observation of

query and information messages that are sent on the

wireless channel as part of the operations of the content-

sharing application, e.g., the previously outlined

approach. As a consequence, Hamlet does not introduce

any signaling overhead. Furthermore, several

optimizations can be introduced to improve the

aforementioned basic scheme for the discovery of content.

Although our focus is not on query propagation, it is

important to take the query process into account, because

it directly determines the network load associated with the

content retrieval operation. While deriving the results, we

consider the following two approaches to query

propagation. 1) Mitigated flooding. This approach limits

the propagation range of a request by forcing a time to

live (TTL) for the query messages. In addition, it avoids

the forwarding of already-solved requests by making the

nodes wait for a query lag time before rebroadcasting a

query;

2) Eureka [13]. This approach extends mitigated flooding

by steering queries toward areas of the network where the

required information is estimated to be denser. Note that

this paper focuses on cooperative caching and we do not

tackle information consistency; thus, we do not take into

account different versions of the content in the system

model. We note, however, that the previous version of

this paper [14] jointly evaluated Hamlet with a basic

scheme for weak cache consistency based on an epidemic

diffusion of an updated cache content and we showed that

weak consistency can be reached, even with such a simple

approach, with latencies on the order of minutes for large

networks. If prompter solutions are sought, Hamlet lends

itself to be easily integrated with one

of the existing consistency solutions found in the

literature (e.g., [9], [12], [15],). In particular, these works

propose push, pull, or hybrid approaches to achieve

different levels of cache consistency. In the case of

Hamlet, a push technique can be implemented through the

addition of invalidation messages broadcast by gateway

nodes, whereas information providers can pull an updated

content (or verify its freshness) before sending the

information to querying nodes. In either case, no major

modification of the Hamlet caching scheme is required:

the only tweaking can consist of resetting the estimation

of the infor-mation presence upon the

notification/detection of an updated version to ease the

diffusion of the new information.

 IV. Hamlet Framework
The Hamlet framework allows wireless users to take

caching decisions on content that they have retrieved

from the network. The process that we devise allows users

to take such decisions by leveraging a node’s local

observation, i.e., the node’s ability to overhear queries

and information messages on the wireless channel. In

particular, for each information item, a node records the

distance (in hops) of the node that issues the query, i.e.,

where a copy of the content is likely to be stored, and the

distance of the node that provides the information. Based

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 142

on such observations, the node computes an index of the

information presence in its proximity for each of the I

items. Then, as the node retrieves content that it

requested, it uses the presence index of such an

information item to determine Fig. 2. whether a copy of

the content should be cached, for how long, and possibly

which content it should replace. By doing so, a node takes

caching decisions that favor high content diversity in its

surroundings, inherently easing the retrieval of data in the

network. Note that our technique works on a per-item

basis, and its results apply to all chunks that belong to the

same content. In the following sections, we first detail

how a node estimates the presence of information chunks

in its proximity. Next, we separately describe the role of

the information presence index in caching decisions for

nodes with large- and small-sized caches. In the former

case, the information presence index determines the cache

content drop time, whereas in the latter case, it drives the

cache content replacement.

A. Information Presence Estimation

We define the reach range of a generic node n as its

distance from the farthest node that can receive a query

generated by node n itself. As an example, in an ideal

setting in which all nodes have the same radio range, the

reach range is given by the product of the TTL and the

node radio range. Next, we denote by f the frequency at

which every node estimates the presence of each

information item within its reach range, and we define as

1/f the duration of each estimation step (also called time

step hereafter). A node n uses the information that was

captured within its reach range during time step j to

compute the following two quantities: 1) a provider

counter by using application-layer data and 2) a transit

counter by using data that were collected through channel

overhearing in a cross-layer fashion. These counters are

defined as follows.

• Provider counter dic(n, j). This quantity accounts for the

presence of new copies of information i’s chunk c,

delivered by n to querying nodes within its reach range,

during step j. Node n updates this quantity every time it

acts as a provider node (e.g., node P in the upper plot of

Fig. 2).

• Transit counter ric(n, j). This quantity accounts for the

presence of new copies of information i’s chunk c,

transferred between two nodes within n’s reach range and

FIORE et al.: CACHING STRATEGIES BASED ON

INFORMATION DENSITY ESTIMATION IN AD HOC

NETWORKS 2201 replacement schemes in [9] and [14].

It is composed of 300 wireless nodes deployed over a

square area of a side equal to 200 m. Nodes can be static,

positioned according to a uniform random distribution, or

mobile, wandering according to a random-direction

mobility model with reflections. The node speed is

uniformly distributed in the range [0.5vm, 1.5vm], where

vm is the average node speed—a varying parameter in our

simulations. The node radio range is set to 20 m,

resulting, for static nodes, in a fully connected network. In

all the scenarios, we deploy two fixed gateway nodes at

opposite ends of the topology. Each gateway permanently

stores 1/2 of the information items, whereas the other half

is provided by the other gateway. Initially, nodes have an

empty cache; they randomly request any among the I

items that are not in their cache according to a Poisson

process with parameter λi = Λqi (1 ≤ i ≤ I). Λ is the query

generation rate per node, whereas qi represents the

content popularity level (i.e., the probability that, among

all possible content, a node requests item i). The TTL

value for query messages is set to ten and five hops for

the case of large- and small-sized caches, respectively,

and the query lag time is 50 ms. Note that the impact of

all the aforementioned query propagation parameters on

the information-sharing behavior has been studied in [23];

here, we only consider what has been identified as a good

parameter setting. With regard to the Hamlet parameters,

the estimation frequency is such that 1/f = 0.2MC; indeed,

through extensive simulations, we observed that the

impact of f is negligible, as long as 1/f is not greater than

20% of the maximum caching time. As we fix τ = fMC,

this setting of f leads to a value of τ as small as 5. Then,

we have α = 0.9 andW = 0.5; indeed, we have verified that

this combination yields a smoother behavior of the

presence index pi(n, j). The values of the remaining

parameters are separately specified for large- and small-

sized caches. The information-sharing application lies on

top of a User Datagram Protocol (UDP)-like transport

protocol, whereas, at the media access control (MAC)

layer, the IEEE 802.11 standard in the promiscuous mode

is employed. No routing algorithm is implemented:

queries use a MAC-layer broadcast transmission, and

information messages find their way back to the

requesting node following a unicast path. Information

messages exploit the request to send/clear to send

(RTS/CTS) mechanism and MAC-level retransmissions,

whereas query messages of broadcast nature do not use

RTS/CTS and are never retransmitted. The channel

operates at 11 Mb/s, and signal propagation is reproduced

by a two-ray ground model. Simulations were run for 10

000 s. In the aforementioned scenarios, our performance

evaluation hinges upon the following quite-

comprehensive set of metrics that are aimed at

highlighting the benefits of using Hamlet in a distributed

scenario:

1) the ratio between solved and generated queries, called

solved-queries ratio;

2) the communication overhead;

3) the time needed to solve a query;

4) the cache occupancy.

We have further recorded the spatiotemporal distribution

of information and the statistics of information survival,

because they help in quantifying the effectiveness of

Hamlet in preserving access to volatile information. As

aforementioned, we did not explore the problem of cache

consistency, because such an

issue is orthogonal to this paper.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 143

Vi. Evaluation With Large-Sized Caches
Here, we evaluate the performance of Hamlet in a

network of nodes with large storage capabilities, i.e., with

caches that can store up to 50% of all information items.

Because such characteristics are most likely found in

vehicular communication devices, tablets, or

smartphones, the network environments under study are

the City and Mall scenarios. As discussed in Section IV,

in this case, the Hamlet framework is employed to

compute the caching time for information chunks

retrieved by nodes, with the goal of improving the content

distribution in the network while keeping the resource

consumption low.

We first compare Hamlet’s performance to the

results obtained with a deterministic caching strategy,

called DetCache, which simply drops cached chunks after

a fixed amount of time. Then, we demonstrate the

effectiveness of Hamlet in the specific task of information

survival. In all tests, we assume I = 10 items, each

comprising C = 30 chunks. All items have identical

popularity, i.e., all items are requested with the same

rate λ = Λ/I by all network nodes. The choice of equal

request rates derives from the observation that, in the

presence of nodes with a large-sized memory, caching an

information item does not imply discarding another

information item; thus, the caching dynamics of the

different items are independent of each other and only

depend on the absolute value of the query rate. It follows

that considering a larger set of items would not change

the results but only lead to more time-consuming

simulations. Each query includes 20 B plus 1 B for each

chunk request, whereas information messages include a

20-B header and carry a 1024-B information chunk. The

maximum caching time MC is set to 100 s, unless

otherwise specified. Queries for chunks that are still

missing are periodically issued every 5 s until either the

information is fully retrieved or a timeout that is set to 25

expires.

A. Benchmarking Hamlet

We set the deterministic caching time in DetCache to 40

s, and we couple DetCache and Hamlet with both the

mitigated flooding and Eureka techniques for query

propagation. We are interested in the following two

fundamental metrics: 1) the ratio of queries that were

successfully solved by the system and 2) the amount of

query traffic that was generated. The latter metric, in

particular, provides an indication of the system

effectiveness in preserving locally rich information

content: if queries hit upon the sought information in one

or two hops, then the query traffic is obviously low.

However, whether such a wealth of information is the

result of a resource-inefficient cache-all-you-see strategy

or a sensible cooperative strategy, e.g., the approach

fostered by Hamlet, remains to be seen. Thus, additional

metrics that are related to cache occupancy

TABLE I AVERAGE OCCUPANCY OF THE NODE

CACHES, EXPRESSED AS A PERCENTAGE OF THE

CHUNKS TOTAL NUMBER FOR λ = 0.003 and

information cache drop time must be coupled with the

aforementioned metrics. Fig. 5 shows the solved-queries

ratio (top plot) and the amount of query traffic (bottom

plot) as λ varies in the City scenario. When DetCache is

used, the higher the query rate, the larger the number of

nodes that cache an information item. This case implies

that content can be retrieved with higher probability and

also that it is likely to be found in the proximity of the

requesting node, thus reducing the query traffic per issued

request. Note that, due to its efficient query propagation

mechanism, Eureka reduces the propagation of useless

queries (and,hence, collisions), yielding a higher solved-

queries ratio than mitigated flooding. However, it is

evident that deterministic caching does not pay off as

much as cooperative caching does in Hamlet. Table I

shows that the average occupancy of node caches in

Hamlet is comparable to the values observed with

DetCache. Thus, it is the quality, not the quantity, of the

information cached by Hamlet that allows it to top a

sophisticated propagation scheme such as Eureka as far as

the solved-queries ratio is concerned. The positive effect

of the caching decisions can also be observed in Fig. 5 in

terms of the reduced overhead and latency

TABLE II

AVERAGE QUERY SOLVING TIME (IN SECONDS),

WITH λ = 0.003 in solving queries. Indeed, Hamlet

reduces the overhead by shortening the distance between

requesting nodes and desired information content.

Similarly, Table II shows how sensible caching choices

can significantly reduce the time required to solve

queries, again due to the homogeneous availability of

information that they generate in the network. Further

proof of such virtuous behavior by Hamlet is provided in

Fig. 6, where mitigated flooding is used for query

propagation. The figure depicts the time evolution of

content presence over the road topology for one

information item; in particular, the z-axis of each plot

shows the fraction of different chunks that comprise an

information item that are present in a squared area of 600

m2. On the one hand, it can be observed that mitigated

flooding with DetCache creates a sharp separation

between the area where the content source resides,

characterized by high item availability, and the region

where, due to vehicular traffic dynamics, information-

carrying nodes rarely venture. On the other hand, Hamlet

favors the diffusion of content over the entire scenario so

that nodes in areas away from the information source can

also be served. Fig. 7 refers to the Mall scenario. The poor

performance of Eureka in this case is due to the lack of

information items over large areas of the Mall scenario,

resulting in queries not being forwarded and, thus,

remaining unsolved [13]. Interestingly, Hamlet greatly

reduces the query traffic for any λ, although providing a

much higher solved-queries ratio. With regard to the

caching occupancy, because Hamlet leads to results that

are comparable with the results obtained with DetCache

(see Table I, Mall scenario), it can be asserted that the

performance gain achieved through Hamlet is due to the

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 144

more uniform content distribution across node caches.

Finally, Table II confirms that such an improved

availability of information shortens the waiting time to

receive requested items. When comparing results obtained

from the Mall and City scenarios, we note that the solved-

queries ratio is consistently lower. We recall that

vehicular mobility in the City environment is

characterized by scattered connectivity but high node

speed, whereas the Mall environment provides a better

network connectivity level but reduced node mobility.

The low node mobility in the Mall keeps items away from

the sources of unpopular items for long periods of time.

Thus, the probability of solving requests for such rare

content is low, unless an efficient caching scheme allows

nodes to preserve at least a few copies of every item in

every neighborhood, as Hamlet does. It is also worth

pointing out that, with respect to the City environment,

the Mall includes a smaller number of nodes; thus, fewer

queries are issued, and a much smaller amount of query

traffic is generated. Finally, we may wonder how well

Hamlet performs with respect to DetCache when the

cache time employed by the latter approach is set to a

value other than 40 s. Through extensive 2206 IEEE

TRANSACTIONS ON VEHICULAR TECHNOLOGY,

VOL. 60, NO. 5, JUNE 2011 Fig. 13. Memory-

constrained mobile nodes: Query-solving ratio for each

information item when using HybridCache and Hamlet,

with I = 300. The plots refer to vm that is equal to 1 m/s

(left) and 15 m/s (right). Furthermore, it is not only the

sheer quantity of data that makes a difference but its

spatial distribution also plays a major role. If several

nodes cache a rare item but they are all very close to each

other, queries that were generated in other areas of the

network take more hops to be satisfied. This case happens

with HybridCache, as proven by the spatial distribution

of the 100th, 200th, and 300th items, as shown in Fig.

12(a). Conversely, the spatial distribution achieved by

Hamlet, as shown in Fig. 12(b), is more uniform, leading

to a faster more likely resolution of queries. We now

compare the performance of HybridCache and Hamlet in

the scenario with memory-constrained mobile nodes. We

test the two schemes when I = 300 and for an average

node speed vm equal to 1 and 15 m/s. The solved-queries

ratio recorded with HybridCache and Hamlet on a per-

item basis are shown in Fig. 13. Comparing the left and

right plots, we note that the node mobility, even at high

speed, does not seem to significantly affect the results due

to the high network connectivity level. The spatial

redistribution of content induced by node movements

negatively affects the accuracy of Hamlet’s estimation

process, which explains the slight reduction in the solved

query ratio at 15 m/s. That same movement favors

HybridCache, at least at low speed, because it allows

unpopular information to reach areas that are far from the

gateway. However, the difference between the two

schemes is evident, with Hamlet solving an average of

20% requests more than HybridCache, when nodes move

at 15 m/s. Note that, for the query resolution delay and the

average cache utilization at the network nodes, we

obtained qualitatively

similar results as in the static case, with Hamlet achieving

more homogeneous solving times and fairer distribution

of content in the network than HybridCache. B. Impact of

the Zipf Distribution Skewness Finally, we study the

impact of the Zipf distribution exponent on the

performance of the cache replacement strategies. We

recall that an exponent that is equal to zero implies perfect

homogeneity, i.e., Zipf distribution that degenerates into a

uniform distribution, whereas the difference in popularity

among content becomes much more unbalanced as the

exponent grows. We focus on a network where ten items

are available and each node can cache at most one

complete item. The choice of this setting is mandated by

the fact that, in the presence of Fig. 14. Memory-

constrained static (top) and mobile (bottom) nodes:

Solvedqueries ratio and query traffic as the Zipf

distribution exponent varies when using HybridCache and

Hamlet, with I = 10. hundreds of different items,

unbalanced popularity distributions (i.e., exponents higher

than 0.5) lead to very low λi for the 100 or so least

popular items, thus making requests for such content

extremely rare. Fig. 14 depicts the evolution of the

solved-queries ratio and the query traffic as the Zipf

exponent ranges vary. By comparing the two plots, we

note that the presence of mobility (vm = 1 m/s) leads to a

higher number of unsolved requests and in a larger

amount of traffic generated within the network under

HybridCache, because queries propagate far from the

source without finding the desired item. However, what is

most interesting is how the network load tends to decrease

as the Zipf exponent grows, both in the absence and

presence of node movements. On the one hand, higher

values of the exponent lead to more unbalanced query

rates, with very few items that are extremely popular and

a long tail of seldom-accessed data.

Being requested so often, popular items become

commonly found in nodes caches, and the relative queries

are solved faster, generating small traffic. On the other,

when the Zipf exponent is small, the distribution of

queries is more balanced, with information more evenly

distributed in the network. This case implies that items

can usually be found but are hardly cached very close to

the requesting node. Thus, the different items are all

requested at a fairly high rate but are not immediately

found, generating larger query traffic.

VIII. Conclusion
We have introduced Hamlet, which is a caching strategy

for ad hoc networks whose nodes exchange information

items in a peer-to-peer fashion. Hamlet is a fully

distributed scheme FIORE et al.: CACHING

STRATEGIES BASED ON INFORMATION DENSITY

ESTIMATION IN AD HOC NETWORKS 2207 where

each node, upon receiving a requested information,

determines the cache drop time of the information or

which content to replace to make room for the newly

arrived information. These decisions are made depending

on the perceived ―presence‖ of the content in the node’s

proximity, whose estimation does not cause any

additional overhead to the information sharing system.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 145

We showed that, due to Hamlet’s caching of information

that is not held by nearby nodes, the solving probability of

information queries is increased, the overhead traffic is

reduced with respect to benchmark caching strategies, and

this result is consistent in vehicular, pedestrian, and

memoryconstrained scenarios. Conceivably, this paper

can be extended in the future by addressing content

replication and consistency. The procedure for

information presence estimation that was developed in

Hamlet can be used to select which content should be

replicated and at which node (even if such a node did not

request the content in the first place). In addition, Hamlet

can be coupled with solutions that can maintain

consistency among copies of the same information item

cached at different network nodes, as well as with the

versions stored at gateway nodes.

References
[1] J. Wortham (2009, Sep.). Customers Angered as

iPhones Overload AT&T. The New York Times.

[Online]. Available: http://www.nytimes.

com/2009/09/03/technology/companies/03att.html

[2] A. Lindgren and P. Hui, ―The quest for a killer app

for opportunistic and delay-tolerant networks,‖ in

Proc. ACM CHANTS, 2009, pp. 59–66.

[3] P. Padmanabhan, L. Gruenwald, A. Vallur, and M.

Atiquzzaman, ―A survey of data replication

techniques for mobile ad hoc network databases,‖

VLDB J., vol. 17, no. 5, pp. 1143–1164, Aug. 2008.

[4] A. Derhab and N. Badache, ―Data replication

protocols for mobile ad hoc networks: A survey and

taxonomy,‖ IEEE Commun. Surveys Tuts., vol. 11,

no. 2, pp. 33–51, Second Quarter, 2009.

[5] B.-J. Ko and D. Rubenstein, ―Distributed self-

stabilizing placement of replicated resources in

emerging networks,‖ IEEE/ACM Trans. Netw., vol.

13, no. 3, pp. 476–487, Jun. 2005.

[6] G. Cao, L. Yin, and C. R. Das, ―Cooperative cache-

based data access in ad hoc networks,‖ Computer,

vol. 37, no. 2, pp. 32–39, Feb. 2004.

[7] C.-Y. Chow, H. V. Leong, and A. T. S. Chan,

―GroCoca: Group-based peer-to-peer cooperative

caching in mobile environment,‖ IEEE J. Sel. Areas

Commun., vol. 25, no. 1, pp. 179–191, Jan. 2007.

[8] T. Hara, ―Cooperative caching by mobile clients in

push-based information systems,‖ in Proc. CIKM,

2002, pp. 186–193.

[9] L. Yin and G. Cao, ―Supporting cooperative caching

in ad hoc networks,‖ IEEE Trans. Mobile Comput.,

vol. 5, no. 1, pp. 77–89, Jan. 2006.

[10] N. Dimokas, D. Katsaros, and Y. Manolopoulos,

―Cooperative caching in wireless multimedia sensor

networks,‖ ACM Mobile Netw. Appl., vol. 13, no.

3/4, pp. 337–356, Aug. 2008.

 [11] Y. Du, S. K. S. Gupta, and G. Varsamopoulos,

―Improving on-demand data access efficiency in

MANETs with cooperative caching,‖ Ad Hoc Netw.,

vol. 7, no. 3, pp. 579–598, May 2009.

[12] Y. Zhang, J. Zhao, and G. Cao, ―Roadcast: A

popularity-aware content sharing scheme in

VANETs,‖ in Proc. IEEE Int. Conf. Distrib.

Comput. Syst., Los Alamitos, CA, 2009, pp. 223–

230.

[13] E. Cohen and S. Shenker, ―Replication strategies in

unstructured peer-topeer networks,‖ in Proc. ACM

SIGCOMM, Aug. 2002, pp. 177–190.

[14] B. Tang, H. Gupta, and S. Das, ―Benefit-based data

caching in ad hoc networks,‖ IEEE Trans. Mobile

Comput., vol. 7, no. 3, pp. 289–304, Mar. 2008.

[15] W. Li, E. Chan, and D. Chen, ―Energy-efficient

cache replacement policies for cooperative caching

in mobile ad hoc network,‖ in Proc. IEEE WCNC,

Kowloon, Hong Kong, Mar. 2007, pp. 3347–3352.

 D.Nagaraju pursuing M.Tech in

the department of computer Science & Engineering. His

interested areas are Network Security and dataminining.

 L.Srinivasa Rao working as assistant

professor in the department of computer Science &

Engineering. His interested areas are Network Security

and dataminining

 K.Nageswara Rao working as

associate professor in the department of computer Science

& Engineering. His interested areas are Network Security

and dataminining

http://www.nytimes/

