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Abstract: 
Preserving edge structures is a challenge to the image interpolation algorithms to reconstruct a high resolution image from a 

low resolution counterpart. We propose a new guide edge linear interpolation technique via address filter and data fusion. For a 

pixel to be interpolated, two sets of observation are defined in two orthogonal directions, and each set produces an estimated 

value of the pixel. These estimates of direction, following the model the different measures of the lack of noisy pixels are fused 

by linear least mean square estimation error (LMMSE) technique in a more robust estimate, and statistics two sets of 

observations. It also presents a simplified version of Based LMMSE interpolation algorithm to reduce computational cost 

without sacrificing much the interpolation performance. Experiments show that the new interpolation techniques can preserve 

sharp edges and reduce artifacts call. 

 

Keywords: Bicubical convolution interpolation, Data Fusion, Edge preservation, Image interpolation, Laplacian, Linear Mean 
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1. Introduction  
Many users of digital images desire to improve the native resolution offered by imaging hardware. Image Interpolation aims to 

reconstruct a higher resolution (HR) image of the associated low-resolution (LR) capture. You have medical imaging 

applications, remote sensing and digital Photos [3] - [4], etc. A number of image interpolation methods have been developed 

[1], [2], [4], [5], [7] - [15]. While commonly used linear methods such as duplication, pixel bilinear interpolation and bicubic 

interpolation convolution, have advantages in simplicity and fast implementation [7] who suffers from some inherent flaws, 

including the effects of block, blur the details and call artifacts around the edges. With the prevalence of low cost and relatively 

digital image LR devices and computing power increasingly interests and the demands of high quality, image interpolation 

algorithms have also increased. The human visual systems are sensitive to edge structures, to transmit a large part of the 

semantics of the picture, so that a re-key requirement for image interpolation algorithms to reconstruct faithfully the edges of 

the original scene. The traditional linear interpolation methods [1] - [3], [4] [5], does not work very well under the criterion of 

preserving the advantage. Some linear interpolation techniques [7] - [14] have been proposed in recent years to maintain Total 

sharpness. The interpolation scheme of Jensen and Anastassiou [7] detects the edges and adapts them for some templates to 

improve the visual perception of large images. Li and Orchard [8] uses the covariance of the estimate LR image covariance HR 

image, which represents the edge direction information to some extent, and proposed a Wiener filter-as the interpolation 

scheme. Since this method requires a relatively great window to calculate the covariance matrix for each offense sample, we 

can introduce some artifacts due to local structures statistics shows the change and, therefore, incorrect estimation of 

covariance. The interpolator of the image and Tenze Carrato [9] first replicates the pixels and then corrected by the use of some 

March 3 pre-edge patterns and optimizing the parameters of the operator. Muresan [14] detected no advantage in diagonal and 

diagonal addresses, and then recovered samples missing along direction detected by one-dimensional (1-D) polynomial 

interpolation.Some linear interpolation methods try to extend a image by predicting the fine structures of the image of human 

resources LR counterpart. For this, a multi-resolution representation image is needed. Takahashi and Taguchi [10] represents a 

Laplacian pyramid image, and with two empirically determine the parameters, it is estimated that the unknown high frequency 

components of the detail signal LR Laplacian. in the the last two decades, the wavelet transform (WT) theory [16] has been 

well developed and provides a good framework for multiresolution for the representation of the signal. WT decomposes signal 

different scales, along the sharp edges which have a signal correlation. Carey, et al. [11] exploits the Lipschitz property sharp 

edges of the scales of wavelets. Module is used Maximum thicker scales information to predict the unknown wavelet 

coefficients at the finer scale. Then the HR image is constructed by reverse WT. Muresan and Parks [13] extended this strategy 

through the influence of a full cone sharp edge in the wavelet scale space, rather than just the top module, for estimation of the 

best coefficients of scale through an optimal recovery theory. The wavelet interpolation method by Zhu et col. [12] uses a 

discrete time parametric model to characterize major edges. With this model in the wavelet domain lost information on the edge 

of the finest scale is recovered via minimum linear mean square estimation error (LMMSE). The previous schemes used, 

implicitly or explicitly, an isolated sharp edge model as an ideal step edge or softened,in the development of algorithms. For 
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real images, however, the wavelet coefficients of a sharp edge can be interfered with by the neighboring edges. In general, 

linear interpolation methods better advantage in preserving the linear methods. In [15], Guichard Malgouyres and analyzed 

some linear and nonlinear expanding imaging methods theoretically and experimentally. Compared with the discontinuities in 

the signals of 1-D, Ringer images of two dimensional (2-D) has an additional property: the direction. In the methods of linear 

interpolation, filtering is 1-D alternatively be made in horizontal and vertical directions without pay attention to the local edge 

structures. In the presence of a strong advantage if a sample is interpolated fault rather than artifacts from the direction of the 

edge, large and visually disturbing be introduced. A conservative strategy to avoid more serious devices is to use a 2-D 

isotropic filter. This, however, reduces the sharpness of the edges. A more "assertive" approach is to interpolate estimated edge 

in one direction. The problem with the latter is it worth the image quality is high if the estimated edge address is incorrect, 

which may occur due to difficulty in determining the direction of the edge of the paucity of data provided image by LR.In this 

paper we propose a new balanced approach to the problem. A sample is interpolated fault in not one but two orthogonal 

directions. The results are treated as two estimates of the sample and using the statistics fused adaptively a local window. 

Specifically, the partition of the neighborhood of each sample is missing in two orthogonal oriented subsets directions. The 

hope is that the observation of two sets exhibit different statistics, since the sample has missing higher correlation with its 

neighbors in the direction of the edge. Each oriented subset produces an estimate of the missing pixel. The finally pixel is 

interpolated by combining the two directional estimates on the principle of LMMSE. This process can discriminate the two 

subgroups according to their consistency absence of the sample, and make the subset perpendicular to the edge contribute less 

to address the LMMSE estimate of the missing shows. The new approach over a significant improvement the linear 

interpolation methods in preserving edge sharpness while the suppression of artifacts, by adapting the local interpolation 

gradient image. A drawback of the interpolation method proposed computational complexity is relatively high. Also 

interpolation algorithm to develop a simplified greatly reduced computing requirements, but without significant degradation in 

performance. 

 

2. Edge-Guided Lmmse-Based Interpolation 
We take a picture LR image  decreased from an image directly associated through human 

resources . Concerning the fig. 1, the black dots represent the 

samples available   and white dots represent samples missing from .The problem of the interpolation is to estimate the 

missing samples in HR image, whose size is 2N X 2M in the samples in LR image whose size NXM. 

 

 
 

Fig. 1. Formation of an LR image from an HR image by directly down sampling. 

 The black dots represent the LR image pixels and the white dots represent the missing HR samples. 

 

 
Fig. 2. Interpolation of the HR samples Ih (2n, 2m). 

 

Two estimates of Ih (2n, 2m) are made in the 45 and 135 directions as two noisy measurements of Ih (2n, 2m). 

The focus of the image interpolation is how to infer and use information about the shows that need to be hidden in neighboring 

pixels. If the sign of the sub-sampled LR image exceeds the Nyquist sampling, convolution-Methods based on interpolation will 

be affected by the alias problem in image reconstruction of human resources. This is the cause of artifacts such as ringing 

effects of image interpolation that are common to the linear interpolation methods. Given that the human visual system is very 

sensitive to the edges, especially in its spatial location is crucial to suppress interpolation artifacts, while retaining the sharpness 
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of the edges and geometry.The edge direction information is most important for the interpolation process. To extract and use 

this information, partitions of neighboring pixels of each sample of lack in two directional subsets are mutually orthogonal. In 

subset, a directional interpolation is done, and then the two interpolated values are merged to arrive at an estimate of LMMSE 

the sample is missing. We recover the HR image in two steps. First, the missing samples in the center locations 

surrounded by four samples are interpolated LR. Secondly, the other samples that is missing and is interpolated with the help of 

samples and recovered. 
 

2.1. Interpolation of Samples   

Referring to Fig. 2, we can interpolate the missing HR sample    along two orthogonal directions: 45 diagonal and 

135 diagonal. Denote by  and the   two results of interpolation direction from some of the linear 

methods, as bilinear interpolation, bicubic interpolation convolution [1] - [5]. Note the direction of interpolation results as noisy 

measurements of the sample failure HR 

 

                                                           (2n, 2m)=  

 

                                                          (2n,2m)=                                                                      (1) 

 

where the random noise variables   and   represent the interpolation errors in the corresponding direction. 

To fuse the two directional measurements  and  into a more robust estimate, we rewrite (1) into matrix form  

                                                                                                                                                                               (2) 

Where 

 
Now, the interpolation problem is to estimate the unknown sample  from the noisy observation Z. This estimation can be 

optimized in minimum mean square-error sense. To obtain the minimum mean square-error estimation (MMSE) of , i.e., 

, we need to know the probability density function . In practice, however, it is very 

hard to get this prior information or  cannot be estimated at all. Thus, in real applications, LMMSE is often employed 

instead of MMSE. To implement LMMSE, only the first and second order statistics of Fh and Z are needed, which may be 

estimated adaptively. 

From (2), the LMMSE of can be calculated as [18] 

                                                                                                                              (3) 

Where  is the co-variance operator, and we abbreviate  as 

, the variance operator. Through the LMMSE operation,  fuses the information provided by directional measurements 

 and . 

Let  Through intensive experiments on 129 images, including outdoor and indoor images, 

portraits, MRI medical images, and SAR images, etc., we found that  and . Thus, noise vector U can be 

considered to be zero mean. Denote by n1 and n2 the normalized correlation coefficients of u45 and u135 with Fh. 

 

 

 
 

Our experiments also show that the values of n1 and n2 are very small. Thus, we consider u45 and u135 and, consequently, U to 

be nearly uncorrelated with Fh. With the assumption that U is zero mean and uncorrelated with Fh, it can be derived from (3) 

that 

                                                                                                                                (4) 
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Where  and To implement the above LMMSE scheme for Fh, parameters , , and need to be 

estimated for each sample  in a local window. 

First, let us consider the estimation of  and . Again, referring to Fig. 2, the available LR samples around  are 

used to estimate the mean and variance of . Denote by W a window that centers at  and contains the LR 

samples in the neighborhood of . For estimation accuracy, we should use a sufficiently large window as long as the 

statistics is stationary in W. However, in a locality of edges, the image exhibits strong transient behavior. In this case, drawing 

samples from a large window will be counterproductive. To balance the conflicting requirements of sample size and sample 

consistency, we propose a Gaussian weighting in the sample window W to account for the fact that the correlation between 

 and its neighbors decays rapidly in the distance between them. The further an LR sample is from , the 

less it should contribute to the mean value of  . We compute  as 

 
Where  is a 2-D Gaussian filter with scale ζ. The variance of  is 

computed as 

 
Next, we discuss the estimation of RV, the co-variance matrix of  U. Using (1) and the assumption that u45 and u135 are zero 

mean and uncorrelated with Fh, it can be easily derived that 

 
                                                                                                                                                                                  (7) 

 
Since  has been estimated by (6), we need to estimate  and in a local window to arrive at  and 

 For this, we associate  with a set of its neighbors in the 45
0
 diagonal direction. Denote by Y45 the vector that 

centers at  

   

                                           (8) 

 

Set Y45 encompasses  and its neighbors, i.e., the original samples and the directional (45
0
 diagonal) interpolated samples. 

Symmetrically, we define the sample set Y135 for  associated with interpolated results in the 135
0
 diagonal 

 

                                    (9) 

The estimates of  and  are computed as 

 
and 

                                                                                                                                           (10) 

Where  is a 1-D Gaussian filter with scale . 

Now,  and  can be computed by (8), and finally the co-variance matrix RV can be estimated as 

                                                                                                   (11) 

Where c3 is the normalized correlation coefficient of u45 with u135 

 
Although  and  are nearly uncorrelated with , they are somewhat correlated to each other because  and  have 

some similarities due to the high local correlation. We found that the values of  are between 0.4 and 0.6 for most of the test 

images. The correlation between  and  varies, from relatively strong in smooth areas to weak in active areas. In the 
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areas where sharp edges appear, which is the situation of our concern and interests, the values of  are sufficiently low, and we 

can assume that  and  are uncorrelated with each other without materially affecting the performance of the proposed 

interpolation algorithm in practice. In practical implementation , the correlation coefficient between  and , can be set 

as 0.5 or even 0 for most natural images. Our experiments reveal that the interpolation results are insensitive to . Varying  

from 0 to 0.6 hardly changes the PSNR value and visual quality of the interpolated image.If a sharp edge presents in  in or 

near one of the two directions (the 45
0
 diagonal or the 135

0
 diagonals), the corresponding noise variances  and 

 will differ significantly from each other. By the adjustment of  in (4), the interpolation value  or , 

whichever is in the direction perpendicular to the edge, will contribute far less to the final estimation result . The presented 

technique removes much of the ringing artifacts around the edges, which often appear in the interpolated images by cubic 

convolution and cubic spline interpolation methods. 

2.2. Interpolation of samples and  

After the missing HR samples  are estimated, the other missing samples and can be 

estimated similarly, but now with the aid of the just estimated HR samples. Referring to Fig. 3(a) and (b), the LR image pixels 

 are represented by black dots “●” while the estimated samples by symbols “ ” The samples that are to be estimated 

are represented by white dots “○” As illustrated in Fig. 3, the missing sample or  can be 

estimated in one direction by the original pixels of the LR image, and in the other direction by the already interpolated HR 

samples. Similar to (2), the two directional approximations of the missing sample are considered as the noisy measurements of 

and , and then the LMMSE of the missing sample can be computed in a similar way as described 

in the previous section. Finally, the whole HR is reconstructed by the proposed edge-guided LMMSE interpolation technique. 

 

3. Simplified Lmmse Interpolation Algorithm 
In interpolating the HR samples, the LMMSE technique of (4) needs to estimate , , RV, and compute the inverse of a 2X2 

matrix. This may amount to too heavy a computation burden for some applications that need high throughput. Specifically, if 

we set  be the average of the four nearest LR neighbors of  to reduce computation, then computing  needs three 

additions and one division and computing  needs seven additions, four multiplications, and one division. By setting the size 

of vector Y45 and Y135 as 5 and setting  and , i.e., , in (10) to reduce the computational 

cost, we still need 20 additions and 20 multiplications to compute RV. The remaining operations in (4) include nine additions, 

eight multiplications, and one division. In total, the algorithm needs 39 additions, 32 multiplications, and three divisions to 

compute a  with (4).One way to reduce the computational complexity of the algorithm is invoked judiciously LMMSE only 

for pixels where high local activities are detected, and use a simple linear interpolation method in smooth regions. Since edge 

pixels represent the minority of the total population of the sample, this will result in significant savings in the calculations. 

Furthermore, a simplified version of the algorithm based on LMMSE interpolation while only slightly decreasing the 

performance.We can see that the LMMSE estimate of HR sample  is actually a linear combination of ,  and . 

Referring to (4) and let , then  is a 2-D vector and we rewrite (4) as 

                                                                                                                                         (12) 

Where  and  are the first and second elements of Γ. We empirically observed that  is close to zero, and, hence,  

has a light effect on . In this view,  can be simplified to a weighted average of  and , while the weights depend 

largely on the noise covariance matrix RV. 

Instead of computing the LMMSE estimate of , we determine an optimal pair of weights to make  a good estimate of . 

The strategy of weighted average leads to significant reduction in complexity over the exact LMMSE method. Let 

                                                                                                                                                           (13) 

Where  The weights  and  are determined to minimize the mean square-error (MSE) of : 

. 

Although the measurement noises of , i.e., and  , are Correlated to some Extent, Their correlation is 

Sufficiently low to Consider and  as being approximately uncorrelated. This assumption holds better in the areas of 

Edges That Are Critical to the human visual system and of interests to us. In fact, if and are highly Correlated, That is 

to say, the two estimates  are close to each other, then  varies little in and anyway. With the assumption 

That and are approximately uncorrelated, we can show the optimal weights are That 
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                                                                                                                        (14) 

It is quite intuitive why weighting system works. For example, for an edge in or near the 135 ° diagonal direction, the variance 

Var ( ) is greater than var ( ). Of (14), which is smaller than and will therefore have less influence  in F. , 

and vice versa. To calculate var ( ) and var ( ) as described in Section II, however, we still have 30 additions, 24 

multiplications and divisions, two. In order to simplify and speed up the calculation of and   , we use the following 

approximations:  

 
where "≅" is almost equivalent. With the above simplification, we only need 23 additions, multiplications and divisions to two, 

two to get and . Finally, with (13), only need 24 additions, multiplications and divisions of four, two to get . This 

results in significant savings compared with computational (4), which requires 39 additions, 32 multiplications and divisions, 

three. Table I shows the counts of the algorithm and the algorithm simplified LMMSE. 

 

TABLE I 

Operations needed for the LMMSE algorithm 

And the simplified algorithm 

Operation Addition Multiplication Division  

LMMSE algorithm 39 32 3 

Simplified algorithm 24 4 2 

 

4. Experimental Results 
The proposed interpolation algorithms were implemented and tested, and their performance was compared to some existing 

methods. We welcome some images of human resources for the corresponding LR images, of which the original images were 

reconstructed human resources by the proposed methods and competitive. Since the original images of HR are known in the 

simulation, we compare the results with real images interpolated, and measure the PSNR of the interpolated images. The 

interpolator based LMMSE introduced was compared with bicubic convolution interpolation, bicubic spline interpolator, the 

subpixel edge detection based Anastassiou interpolator and Jensen [7], and the Wiener-like filter interpolator Orchard Li and 

[8]. To assess the sensitivity of the proposed interpolation algorithms for different initial estimates of management before the 

merger, which were tested when combined with interpolators bicubic and bilinear convolution, respectively. In the figure 

legends, the LMMSE method developed in Section II is labeled LMMSE_INTR_linear LMMSE_INTR_cubic or, depending on 

whether or bilinear bicubic convolution interpolation is used to obtain an initial estimate of direction. Similarly, the simplified 

method of Section III is labeled OW_INTR_cubic (OW represents the optimal weight) or OW_INTR_linear. In the 

experiments, sets the scale of 2-DG ζ Gaussian filter [referring to (5)] around 1 and ξ scale of1-D Gaussian filter g [referring to 

(9)] in about 1.5. Our experimental results also draw attention to a fact that the proposed methods are insensitive to the choice 

of initial directional interpolators. Even with bilinear interpolation, which normally get significantly worse results than bicubic 

interpolation, the end result is merged very close to that of bicubic interpolation, especially in terms of visual quality. Figs. 3 

and 4 show the interpolated images butterfly Lena and LMMSE_INTR_cubic and LMMSE_INTR_linear methods. In visual 

effects, the two methods are almost indistinguishable. This shows the power of LMMSE strategy based on data fusion in 

correcting much of interpolation errors of traditional linear methods. 

 

                                                          
               (a)                                                                                 (b) 

 

                                 Fig.3. Interpolated image Lena by                           (b) LMMSE_INTR_linear. 

                                (a) LMMSE_INTR_cubic and 
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               (a)                                                                                   (b) 

                                   Fig.4. Interpolated image Butterfly by 

                                    (a)  LMMSE_INTR_cubic and                           (b) LMMSE_INTR_linear. 

   

                     
                   (a)                                          (b)                                                (c)                                              (d) 

 

                                                             
                                                                 (e)                                                        (f) 

Fig.5. Interpolation results of the image Lena. (a)Original image, interpolated image by (b) 

the cubic convolution, (c)the method in [8], (d) the method in [9],(e)the proposed LMMSE_INTR_cubic, and 

(f) the proposed OW_INTR_cubic. 

 

                         
                 (a)                                             (b)                                               (c)                                                  (d) 

                                                      
                                                                  (e)                                                           (f) 

Fig.6. Interpolation results of the image blood. (a) Original image, interpolated image by (b) the cubic convolution, (c) the 

method in [8], (d) the method in [9],(e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic. 

 

                       
                 (a)                                             (b)                                                  (c)                                            (d) 

                                                         
                                                       (e)                                                              (f) 

Fig.7. Interpolation results of the image butterfly. (a) Original image, interpolated image by (b) the cubic convolution, (c) the 

method in [8], (d) the method in [9],(e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic. 
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                  (a)                                                (b)                                                 (c)                                                   (d) 

                                                    
                                                              (e)                                                          (f) 

Fig.8. Interpolation results of the image peppers. (a) Original image, interpolated image by (b) the cubic convolution, (c) the 

method in [8], (d) the method in [9],(e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic. 

 

        
(a)                                            (b)                                            (c)                                                  (d)  

                                                               
                                                              (e)                                                                    (f) 

Fig.9. Interpolation results of the image house. (a) Original image, interpolated image by (b) the cubic convolution, (c) the 

method in [8], (d) the method in [9],(e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic. 

 

In Figs. 5-9, we compare the visual quality of the test interpolation methods for natural images: Lena, blood samples, butterfly, 

Peppers, and house. The proposed methods remove many of the ringing and other visual artifacts of the other methods. The 

OW_INTR_cubic method is slightly inferior to the LMMSE_INTR_cubic method in reducing the ringing effects, but this is a 

small price to pay for the computational savings of the former. The interpolator of Jensen and Anastassiou [7] can reproduce 

very thin edges in the object contour because it contains a subpixel edge detection process, but it causes visible artifacts when 

the edge detector commits errors.This method leaves a considerable amount of ringing effects in the hat of Lena and the wing 

of the Butterfly. The interpolator of Li and Orchard [8] can preserve large edge structures well, such as those in Lena; however, 

it introduces artifacts in the finer edge structures, such as the drops of Splash and the head part of Butterfly. Another 

disadvantage of Li and Orchard’s method is its high computational complexity. If an 8x8 window is used to compute the 

covariance matrix, this algorithm requires about 1300 multiplications and thousands of additions. In comparison, the proposed 

LMMSE_INTR_cubic algorithm requires only tens of multiplications and divisions. The down-sampling process considered in 

this paper, through which an LR image is generated from the corresponding HR image, is ideal Dirac sampling. An alternative 

model of LR images is that of low-pass filtering followed by down-sampling. 
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5. Conclusion 
We have developed an edge type guided LMMSE image interpolation technique. For each pixel to be interpolated, the partition 

of their neighborhood into two subsets of observation in two orthogonal directions. Each subset observation was used to 

generate an estimate of the missing sample. These two directional estimates were processed as two sample noisy measurements 

missing. Using statistics and combination of the two subsets of observation merged the two measurements of noise in a more 

robust estimation through linear minimum mean square estimation error. To reduce the computational complexity of the 

proposed method was simplified to an optimal weighting problem and determines the optimum weights. The simplified method 

had a competitive performance with significant computational savings. The experimental results showed that the methods 

presented avoided interpolation against edge directions and, therefore, achieve remarkable reduction in timbre and other visual 

artifacts. 
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