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 Abstract 

Image tampering detection is a significant multimedia forensics topic which involves, assessing the authenticity or not of a 

digital image. Information integrity is fundamental in a trial but it is clear that the advent of digital pictures and relative 

ease of digital image processing makes today this authenticity uncertain. In this paper this issue is investigated and a 

framework for digital image forensics is presented, individuating if the tampering has taken place. Based on the 

assumptions that some processing must be done on the image before it is tampered, and an expected distortion after 

processing an image, we design a classifier that discriminates between original and tampered images. We propose a novel 

methodology based on gradient based image reconstruction to classify images as original or tampered. This methodology 

has its application in a context where the source image is available (e.g. the forensic analyst has to check a suspect dataset 

which contains both the source and the destination image). 

 

Index Terms — Gradient, Poisson equation, Region of interest (ROI), Digital image forensics, Authenticity verification, 

Image reconstruction from gradients. 

1 INTRODUCTION                                                                     

N today’s digital age, the creation and manipulation of digital images is made simple by digital processing tools that are easily 

and widely available. As a consequence, we can no longer take the authenticity of images for granted especially when it comes to 

legal photographic evidence. Image forensics, in this context, is concerned with determining the source and potential authenticity 

of an image. Although digital watermarks have been proposed as a tool to provide authenticity to images, it is a fact that the 

overwhelming majority of images that are captured today do not contain a digital watermark. And this situation is likely to con-

tinue for the foreseeable future. Hence in the absence of widespread adoption of digital watermarks, there is a strong need for 

developing techniques that can help us make statements about the origin, veracity and authenticity of digital images. 

 In this paper we focus on the problem of reliably discriminating between “tampered” images (images which are altered in order 

to deceive people) from untampered original ones. The basic idea behind our approach is that a tammpered image (or the least 

parts of it) would have undergone some image processing. Hence, we design a classifier that can distinguish between images that 

have and have not been processed. We apply it to a suspicious image of a target image and classify the suspicious image as tam-

pered or untampered. The rest of this paper is organized as follows: In Section 2we present a method to verify the authenticity of 

images that is used in the classifier we design for image forensics, i.e. we formulate the problem and present solution methodol-

ogy. Statistical performance results are given in Section 3, with conclusions drawn in section 4. 

2 PROBLEM FORMULATION AND SOLUTION METHODOLOGY 
The problem of fraud detection has been faced by proposing different approaches each of these based on the same concept: a 

forgery introduces a correlation between the original image and the tampered one. Several methods search for this dependence 

by analyzing the image and then applying a feature extraction process. In [1] the direct approach proposed by Fridrich et al. 

comprises of performing an exhaustive search by comparing the image to every cyclic – shifted versions of it, which requires 

(MN
2
) steps for an image sized M by N. This computationally expensive search does not work where the copied region has 

undergone modifications. In [2] A.N. Myma et al. presented an approach of first applying wavelet transform to the input image 

to yield a reduced dimension representation, then exhaustive search is performed to identify similar blocks in the image by 

mapping them to log polar co-ordinates and using phase correlation as the similarity criterion. But the performance relies on the 

location of copy- move regions. In [3] Weihai Li et al. utilized the mismatch of information of block artifact grid as clue of copy 

paste forgery. A DCT grid is the horizontal lines and the vertical lines that partition an image into blocks and a block artifact grid 

(BAG) is the grid embedded in an image where block artifact appears. The DCT grid and BAG match together in untampered 

images. But if the copied area is from the other different image it cannot be detected by the method, also the complexity of 

algorithm is high. In [4] Bayram et al. proposed Fourier – Mellin transform (FMT). But the algorithm works for the case of only 

slight rotation. In [5] Xu Bo et al. proposed a method in which Speed up Robust features (SURF) key points are extracted and 

their descriptors are matched within each other with a threshold value. This method fails to automatically locate the tampered 

I 
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region and its boundary.  
None of these approaches [1, 2, 3, 4, and 5] conducts authentication verification using gradient maps in the image reconstruction. 

The approach presented in this paper verifies the authentication in two phases modeling phase and simulation phase. In modeling 

phase the image is reconstructed from the image gradients by solving a poisson equation and in the simulation phase absolute 

difference method and histogram matching criterion between the original and test image is used. The solution methodology is 

discussed in the subsequent paragraphs. 

2.1 Image Reconstruction  

In the year 1993 Luc Vincent [6] carried out the work in morphological grayscale reconstruction. In 2004 Di Zang and G. 

Sommer [7] carried out phase based image reconstruction in the monogenic scale space. In 2005 S. Leng et al. [8] presented fan-

beam image reconstruction algorithm to reconstruct an image via filtering a back projection image of differentiated projection 

data. In 2008 A. L. Kesidis and N. Papamarkos [9] presented a new method for the exact image reconstruction from projections. 

The original image is projected into several view angles and the projection samples are stored in an accumulator array. In 2011 P. 

Weinzaepfel et al [10] proposed another novel approach which consists using an off-the-shelf image database to find patches 

visually similar to each region of interest of the unknown input image. 

The approach presented in this paper is gradient based image reconstruction by solving poisson equation. The details of the 

method are described as under: 

 

2.1.1 Gradient Based Image Reconstruction: 

As already stated in our previous work [11] image reconstruction from gradient fields is a very active research area. The gradi-

ent-based image processing techniques and the poisson equation solving techniques have been addressed in several related areas 

such as high dynamic range compression [12], Poisson image editing [13], image fusion for context enhancement [14], interac-

tive photomontage [15], Poisson image matting [16] and photography artifacts removal [17]. A new criterion is developed, where 

the image is reconstructed from its gradients by solving a poisson equation and hence used for authenticity verification [11]. 

In 2D, a modified gradient vector field,      

        G’ = [G’x, G’y]                                                         

 (1)may not be integrable.                                   

Let  I’ denote the image reconstructed from G’, we employ one of the direct methods recently proposed in [12] to minimize,  

|| ∇ I’ – G||                                                                             

(2)so that, 

        G ≈ ∇ I’                                                                                    

 (3)By introducing a Laplacian and a divergence operator, I’ can be obtained by solving the Poisson differential equation [18, 19] 

∇ 2 
I’ = div([G’x,G’y])                                                                        

Since both the Laplacian and div are linear operators, approximating those using standard finite differences yields a large system 

of linear equations. The full multigrid method [20] is used to solve the Laplacian equation with Gaussian-Seidel smoothing 

iterations.  For solving the poisson equation more efficiently, an alternative is to use a rapid poisson solver, which uses a sine 

transform based on the method [18] to invert the laplacian operator. Therefore, the rapid poisson solver is employed in our 

implementation. The image is zero-padded on all sides to reconstruct the image. 

 

2.1.2 Poisson Solvers: 

A Poisson solver produces the image whose gradients are closest to the input manipulated gradient domain image in a least 

squares sense, thereby doing a kind of inverse gradient transform. Note that if the input were a gradient domain image whose 

gradients had not been manipulated, the inverse gradient transformation would have an exact solution, and the poisson equation 

would give a perfect reconstruction of the image. Both the FFT-based solver and the poisson solver using zero Dirichlet bounda-

ry condition work successfully in obtaining an inverse gradient transformation in the sense that they give a perfect reconstruction 

of the image when the input gradient domain image is not manipulated. This section details the poisson solver which has been 

used in the present research work.  

In this section, we describe the standard gradient integration problem and its poisson solution and then expand this result to in-

clude a data function term. The problem of computing a function f (x,y) whose gradient ∇f (x,y) is as close as possible to a given 

gradient field g (x,y) is commonly solved by minimizing the following objective: 

∫ ∫ || ∇f – g ||
2
 dx dy.                                                            

Note that g is a vector-valued function that is generally not a gradient derived from another function. (If g were derived from 

another function, then the optimal f would be that other function, up to an unknown constant offset.) 

It is well-known that, by applying the Euler-Lagrange equation, the optimal f satisfies the following Poisson equation: 

∇2
 f = ∇· g,                                                                    
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 (6) which can be expanded as fxx + fyy = gx
x
 + gy

y
 , where g = (g

x
, g

y
). Subscripts in x and y correspond to partial derivatives with 

respect to those variables. We have superscripted g
x
 and g

y
 to denote the elements of g rather than subscript them, which would 

incorrectly suggest they are partial derivatives of the same function.We now expand the objective beyond the standard formula-

tion. In particular, we additionally require f(x, y) to be as close as possible to some data function u(x, y). The objective function 

to minimize now becomes: 

∫ ∫ λd (f − u)
2
 + ||∇f – g||

2
 dx dy,                                

 (7)Where, λd  is a constant that controls the trade-off between the fidelity of f to the data function versus the input gradient field. 

To solve for the function f that minimizes this integral, we first isolate the integrand: 

L = λd (f − u)
2
 + ||∇f – g||

2
 = λd (f − u)

2
 + (fx − g

x
)

2
 + (fy − g

y
)

2
  

                                                                                                                                                                                                               

(8)The function f that minimizes this integral satisfies the Euler-Lagrange equation: 

(dL / df) - (d/dx) . (dL/dfx) – (d/dy).(dL/dfy) = 0                 

(9)Substituting and differentiating, we then have: 

2 λd (f − u) − 2(fxx − g
x
) − 2(fyy − g

y 
) = 0                                    

 (10)Rearranging gives us: 

λd f − (fxx + fyy) = λdu − (gxx + gyy)                                               

  (11)or equivalently: 

λd f − λ
2
f = λd u − λ· g                                                                  

  (12) 

The left-hand side of this equation is poisson equation, typically studied in three dimensions in physics. Our analysis will be in 

2D. As expected, setting λd = 0 nullifies the data term and gives us the Poisson equation. 

 

2.1.3 Discrete Sine Transform  

In this section we analyze the 2D Poisson equation in the sine domain. As with fast Poisson solvers, we can solve the screened 

poisson equation (Equation 8) by taking its sine transform. 

The discrete sine transform (DST) is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using a 

purely real matrix. It is equivalent to the imaginary parts of a DFT of roughly twice the length, operating on real data 

with odd symmetry (since the Fourier transform of a real and odd function is imaginary and odd), where in some variants the 

input and/or output data are shifted by half a sample. 

Formally, the discrete sine transform is a linear, invertible function F : RN  RN (where R denotes the set of real numbers), or 

equivalently an N × N square matrix. There are several variants of the DST with slightly modified definitions. The N real 

numbersx0,...., xN-1 are transformed into the N real numbers X0, ..., XN-1 according to the formula: 

 
                                                                                                        (13) 

 
Figure 1: Schematic diagram for Modeling and Simulation Phase 

 

 

2.1.4       Inverse Discrete Sine Transform 

The inverse of DST is DST multiplied by 2/ (N+1). Like for the DFT, the normalization factor in front of these transform defini-

tions is merely a convention and differs between treatments.  

http://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Even_and_odd_functions
http://en.wikipedia.org/wiki/Symmetry
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
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2.2 Absolute Difference 

In the present work our approach is to find the absolute difference between the original and the reconstructed image. Subtraction 

gives the difference between the two images, but the result may have a negative sign and can be lost. The function that finds how 

different the two images are- regardless of the arithmetic sign- is the absolute difference:    

N(x, y) = |O1(x, y) – O2(x, y)|,                                    

 (14)where, O1(x, y) and O2(x, y) are pixels in the original images, |x| is the absolute difference operator, and N(x, y) is the re-

sultant new pixel. The absolute difference operator returns +x whether the argument is –x or +x. 

2.3 Histogram Normalization 

Histogram is a graphical representation of the intensity distribution of an image. It quantifies the number of pixels for each intensity 

value considered.Histogram normalization is a method that improves the contrast in an image, in order to stretch out the intensity 

range. Equalization implies mapping one distribution (the given histogram) to another distribution (a wider and more uniform dis-

tribution of intensity values) so that the intensity values are spread over the whole range. 

To accomplish the equalization effect, the remapping should be the cumulative distribution function (CDF) 

 For the histogram H(i), its cumulative distribution H’(i) is: 

H’(i) = Σ H(j), where 0 ≤ j < i                                            

(15)To use this as a remapping function, we have to normalize H’(i)  such that the maximum value is 255 ( or the maximum value 

for the intensity of the image ). Finally, we use a simple remapping procedure to obtain the intensity values of the equalized image: 

equalized(x, y) = H’(src(x,y))                                           (16) 

In our work, first we perform the histogram normalization and then the histogram equalization criteria is used where the normalized 

histogram values of the original and test image are utilized for matching the two images. 

2.4 Algorithm Used: 

Algorithm 1: Modeling and Simulation of original and reconstructed image 

 
Modeling phase 

Step 1: Read an image (IO). 

Step 2: Convert into grayscale image, say R. 

(Enhancement stage) 

Step 3: Perform Scaling on the image. 

Step 4: Enhance the image using median filtering and convolution theorem (IO). 

Step 5: Reconstruct the image using proposed methodology (IO’). 

Step 6: Find the absolute difference between original and reconstructed image (AO). 

Step 7: Store the original image, reconstructed image and absolute difference (IO, IO’, AO) 

Simulation phase 

Step 8: Input a test image (IT) 

Step 9: Reconstruct IT to obtain IT’ and find the absolute difference (AT) between IT and IT’ 

Step 10: Compare AT and AO to find a match and hence allow or reject the subject accordingly. 

2.5 Modeling and Simulating 

As shown in Fig. 1, in the modeling phase, let IO be the original image of a subject which has to be modeled for the formation of 

knowledge based corpus. After enhancing and proper scaling of the original image IO, the image is poisson reconstructed from its 

gradients as: 

IO’ = Poisson_reconstruction (IO)                                            

(17) Now the absolute difference between the original and reconstructed image is calculated as: 

AO = Absolute_difference (IO, IO’)                                         

 (18) Now store the triplet (IO, IO’, AO) in the corpus so as to form the knowledge based model (corpus). The equations  

(17) and (18) can be repeatedly used to register n number of subjects, and store their details for authentication verification.                      

In the simulation phase, when the tampered or forged image will be presented to the security system for authentication, the sys-

tem will reconstruct the test image (IT) as: 

IT’ = Poisson_reconstruction (IT)                                           

  (19) And, then the absolute difference between the original test image (IT) and reconstructed test image (IT’) is calculated as: 

AT = Absolute_difference (IT, IT’)                                          

 (20)      Now, the resultant AT is compared with AO (the absolute difference stored in corpus of the original and reconstructed 

original image in modeling phase) 



                     International Journal Of Computational Engineering Research (Ijceronline.Com) Vol. X Issue. X 
 

 

Issn 2250-3005(online)                                                     September| 2012                                                                           Page 1506 
    

       

  

If (AT == AO) 

                “Authenticity Verified as TRUE!” 

           Else 

                “Authenticity Verified as FALSE!”         

Hence, the result will reject the subject due to a mismatch and  the images obtained by forgery or tampering for authenticity 

verification will be classifiedd as fake or invalid and any hidden data (for destroying the security system or secret 

communication) will be clearly identified. 

3 RESULTS AND DISCUSSION 
The solution methodology for the above stated problem is implemented using proposed algorithm and the experimental out-

comes are shown below: 

3.1 Results for modeling phase (Original Image). 

 

 

 

 

 

 

 

 

Figure 2.1: Original Image (IO) 
Reconstructed

 

 

10 20 30 40 50 60 70 80 90

20

40

60

80

100

120

140 20

40

60

80

100

120

140

160

180

200

220

 
Figure 2.2: Reconstructed Image (IO’) 

 

 

Solving Poisson Equation Using DSTime for Poisson Reconstruction = 0.703055 secs 

(Image Size: 98×150) 

 
 

 

Figure 2.3: Histogram of original image (IO) and Reconstructed Image (IO’) 
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Figure 2.4: Histogram of absolute difference of original image (IO)   

and reconstructed original image (IO’)  (left), Plot of absolute difference of original image (IO) and reconstructed origi-

nal image (IO’) (right) 

 

 

 

 

 

 

 

As shown in Fig. 2.1 to Fig. 2.5, the registration of the images for authenticity verification has been done by using the steps of 

the modeling phase mentioned in Algorithm 1. The original image IO (Fig. 2.1) is converted to grayscale image, then the image is 

scaled and enhanced and then the scaled image is poisson reconstructed and the resultant image (IO’) is shown in Fig. 2.2. The 

histogram of the original and reconstructed image is shown in subplots in Fig. 2.3. For authenticity verification the absolute dif-

ference (AO) of the original image (IO) and reconstructed image (IO’) is calculated. Now the histogram of AO is obtained and the 

result is shown in Fig. 2.4 (left). The plot of the histogram so obtained is shown in Fig. 2.4 (right), and the plot of normalized 

histogram is shown in the Fig. 2.5. This plot of the normalized histogram will be compared with that of the test image during 

simulation. Now the corpus contains the triplet (IO, IO’, AO) for the registered subject’s original image.  

The above can be repeated for the registration of n number of subject’s. 

3.2 Results for simulation phase [Test (tampered) Image] 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Test Image (IT) 
Reconstructed
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Figure 3.2: Reconstructed Test Image (IT’)     

                                                                        Solving Poisson Equation Using DST 

                                                                  Time for Poisson Reconstruction = 0.060161 secs 
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Image Size: (184×274) 

 
 

 

Figure 3.3: Histogram of original Test image (IT) and Reconstructed Test Image (IT’)                   
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Figure 3.4 : Histogram of absolute difference of test image (IT) and reconstructed test image (IT’) 

(left), Plot of absolute difference of test image (IT) and reconstructed test image (IT’) (right) 
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Figure 3.5: Plot of the Normalized Histogram of the absolute difference of test image (IT) and reconstructed test image 

(IT’) 

 

The test image (tampered) is passed through the steps of simulation phase mentioned in Algorithm 1 and the results are shown in 

Fig. 3.1 to Fig. 3.5. The authenticity verification of the test image (IT) has been done by using the steps of the simulation phase 

mentioned in Algorithm 1. The test image IT (Fig. 3.1), is converted to grayscale image, then the image is scaled and enhanced. 

Now the scaled image is poisson reconstructed and the resultant image (IT’) is shown in Fig. 3.2. The histogram of the test and 

reconstructed test image is shown in subplots in Fig. 3.3. For authenticity verification the absolute difference (AT) of the test 

image (IT) and reconstructed test image (IT’) is calculated and then the histogram of AT is obtained and the result is shown in Fig. 

3.4 (left) and the plot of the histogram so obtained is shown in Fig. 3.4 (right). Finally, the plot of normalized histogram is shown 

in the Fig. 3.5 which will be compared with that stored in corpus. 
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4 CONCLUSION 
The normalized histogram of absolute difference of the test image and reconstructed test image (Fig. 3.5) is compared with the 

normalized histogram of absolute difference of the original image and reconstructed original image (Fig. 2.5), and the so ob-

tained result is inequality, since, the value of the difference is not zero and comes to be- 

0.0049units. 

And, hence the image is classified as tampered and finally rejected. If the image was not tampered then the so obtained differ-

ence (between the the normalized histogram of absolute difference of the test image and reconstructed test image (Fig. 3.5) and 

the normalized histogram of absolute difference of the original image and reconstructed original image (Fig. 2.5) would be- 

 0.0000units. 

In this manner the authenticity of the individual’s can be verified and the test images can be classified as tampered (or forged) or 

original, and hence the tampering can be detected. We also observed that the time required to reconstruct the original image is- 

  0.703055 secs, 

But, the time required to reconstruct the tampered image is-              

0.060161 secs. 

Hence, we also conclude that the tampering can be detected by the time our poisson solver takes to reconstruct the original im-

age and test image. 
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