
Ashish B. Pasaya, Kiritkumar R. Bhatt /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |771-775 Page 771

Implementing VGA Application on FPGA using an Innovative

Algorithm with the help of NIOS-II

Ashish B. Pasaya
1

1
E & C Engg. Department, Sardar Vallabhbhai Patel institute of technology, Vasad, Gujarat, India.

Kiritkumar R. Bhatt
2

2
Associate Professor, E & C Engg. Dept.,

Sardar Vallabhbhai Patel Institute of Technology, Vasad-388306.

Abstract
Basically, here we have used VGA for implementing basic graphics applications that can be either used in a single

user game or either in advertisements that deals with real-time application. Further expanding the logic with the

coding part even double user game could be developed. So, we thought of using VGA as a standard for this

implementation as it is the basic graphics array and compatible with other graphical arrays. Here, we used HDL

language on Quartus-II software for interfacing the required peripheral to the NIOS-II Soft-core processor through

FPGA Cyclone-II Processor. Where, we made use of the Innovative Algorithm for implementing the application of

VGA with the help of C language on NIOS-II Soft-core processor that will contain the logic part. Finally, the results

that we obtained for VGA application implementation.

 Keywords: VGA, FPGA, HDL, Quartus-II, NIOS-II, DE2 Education Board.

I. Introduction
In this project the most required things will be VGA, DE2 Education Board on which the FPGA and NIOS-II soft-

core processor is embedded along with other components. Here, VGA stands for "Video Graphics Array”

(en.wikipedia.org/wiki/Video_Graphics_Array). It is the standard monitor or display interface used in most PCs.

Therefore, if a monitor is VGA-compatible, it should work with most new computers. The VGA standard was

originally developed by IBM in 1987 and allowed for a display resolution of 640x480 pixels. The VGA supports

both All Points Addressable graphics modes, and alphanumeric text modes. There are two kinds of VGA interface

signals to display. One is data signal, and the other one is control signal. There are three data signals red, green and

blue and two control signals horizontal synchronization and vertical synchronization signals [1]. There are different

frequencies of the horizontal synchronization signal and vertical synchronization signal for the changeable output

resolution [1]. Thus, if someone wants to implement any application on any higher graphics arrays, the try could be

given on the VGA first. So, we did the same thing by implementing the application on the VGA.

 Now, if we talk of FPGA then we used Cyclone-II FPGA of family EP2C35F672C6. For this we used

Quartus-II software in which you can specify your design by three ways i.e. schematic entry, Verilog HDL and

VHDL. In our case we have used the Verilog HDL to specify the design. It is possible to make use of even both the

HDL languages together. Also, it is possible to implement the required application by just using the HDL languages

but then this will make your code very lengthy and will also increase the complexity. Due to which it will reduce the

easiness to understand the code and it will also put burden of the memory associated with the FPGA. Now, we know

that the memories associated with the FPGA will have sufficient memory space for small information’s like limited

number of characters and some image requiring very small memory to be displayed on screen, but would be

insufficient to display an animated characters or images. For this kind of situation we will require some additional

processor that can reduce the length of code and other information while developing some real-time applications.

So, we do have a processor named NIOS-II soft-core processor which allows the input in both the C and C++

languages. This processor is embedded on the DE2 Board itself.

 Thus, what we need to do is just to interface the peripheral required for our application with the NIOS-II

soft-core processor. For that here we use the HDL language to interface the NIOS-II with required peripheral

through FPGA. We had used C as an input language on the NIOS-II soft-core processor for implementing the

innovative algorithm that we developed for our required application. Here, our required application is a single user

game. Where there is a mouse as an input for single user and VGA screen as an output. On screen we will have one

paddle which in our case is a rectangular block and one small ball like structure which in our case is small square

block. Paddle will move according to the movement of the mouse that is connected to the USB blaster of the DE2

Board and the ball will do the movement depending on whether there has been a click on a mouse or not.

 This paper is organized as follows: Section 2 describes the innovative algorithm used for implementing

VGA application. Section 3 shows the VGA application implementation results. Section 4 concludes the paper.

http://en.wikipedia.org/wiki/All_Points_Addressable
http://en.wikipedia.org/wiki/Text_mode

Ashish B. Pasaya, Kiritkumar R. Bhatt /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |771-775 Page 772

II. Innovative Algorithm for VGA application

 NO

 Yes

 NO

 Yes

Figure 1. Innovative Algorithm for VGA Application

Creating the objects (square and rectangle) required at desired position (lower position in this case)

on screen

Creating certain number of lines on the top area of a screen

Creating a shifting logic for a rectangle

Creating a shifting logic for a square for before and after click of a mouse

Detection of a left click of a mouse

Square block will get released at 45 Degree angle from last shifted position

Clicked?

Square block will move along with a

rectangular block maintaining the same

position with rectangular block

The square block while moving if it touches the boundary area it gets rejected back at 45 Degree

angle from boundary making 90 Degree with the incident path

If it encounters any line, then the line touching the block gets deleted and the square block gets

reflected at 45 Degree angle from that point and keeps moving ahead

At the bottom boundary it will first detect for the rectangle block

Is

rectangle

there?

Screen will get

off

Continues doing motion

Ashish B. Pasaya, Kiritkumar R. Bhatt /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |771-775 Page 773

Here, first of all we will create the objects that are required in our project to be displayed on the screen i.e. a small

square block, a rectangular block and few lines. Where we will have these lines at the top most part of the screen

and these rectangle block will do movement in horizontal plane on the bottom part of the screen and will remain at

the fixed at vertical position of the screen, while the small square in this project will have both the horizontal

movement as well as other random movement depending on the situation.

 Now, we will create a shifting logic in which the rectangle which shift in horizontal direction on screen

being fixed in vertical direction. This shift will be according the movement of the mouse, where the movement of

the mouse decides whether to get shifted in on left or right. That is in wherever direction the mouse moves the

rectangle block on the screen also moves, just because the rectangle block is in synchronization with the position of

the mouse. In other sense we can say that the rectangular block represents the cursor of the mouse but not exactly.

The movement of the rectangle block in the screen would be only within the boundaries set by the programmer on

the screen. For example, you can take the boundary as 620×460.

 Now creating a shifting logic for a small square block. This task will be more complex than that of creating

a sifting logic for a rectangular block. Here there will be two kind of motion of a square block depending on the

click of the mouse. Here the value will be assigned to one variable which will detect whether the click has occurred

or not. Like its value will be set if the click has already occurred and unset if not occurred. This part will be the

detection part of whether the click has occurred or not. Now during detection if no click has occurred then it will just

keep shifting in horizontal direction along with the rectangular block, where the position of a square block will

remain constant with respect to the position of the rectangular block. These detection will occur continuously. If the

click occurs during detection then the square block will now get released at 45 degree angle from the last moved

position and will start to get incident on the boundary wall set by the programmer. Now this angle of incident and

angle of reflection at the wall will make 90 degrees with each other. After getting reflected the square block will

keep moving ahead and will touch the bottommost line at the top of the screen. When the square block touches the

line it gets reflected from the like at 45 degrees again making 90 degree angle with the incident path to the line and

the line will get deleted/erased from that position. The square block will keep moving ahead and now will touch the

another boundary wall and get reflected back at 45 degree angle making 90 degree with the incident path.

 Now it keeps doing motion ahead in the bottom direction where the rectangle block is already doing motion

as per the movement of the mouse in horizontal direction. The rectangular block must catch the square block on its

top otherwise if it misses the square block then the screen will get off. There will be detection by square block logic

for the presence of the rectangular block on the bottom surface of the screen. If the rectangular block catches the

square block on the top then the square block will get reflected from the top surface of the rectangular block at 45

degree angle making 90 degree angle with the incident path and keeps moving ahead towards wall and will follow

the same scenario as ahead it did and will erase each lines when it gets touched to line and will then incident to the

wall after each line gets erased by the touch. Here when the square block is shifting then the one pixel from back

position will get and one pixel in front of the rectangular block will be displayed which shows that the rectangular

block is doing motion if speed is increased for the shift.

The rectangular block will move according to positive X and negative X direction. While the square block

move according to both the positive and negative direction of X and Y. so, at whatever wall it gets incident to the

wall or any other object it will get reflected in its negative direction.

 Here the square block will become independent of the movement of the mouse when the click occurs, so

there will be no dependence of the square block on the rectangular block and the mouse as well. The speed of the

movement of the rectangular block and square block can be set between the minimum 50 MHz to maximum 400

MHz in our project.

Ashish B. Pasaya, Kiritkumar R. Bhatt /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |771-775 Page 774

III. Results of VGA application implementation

FIGURE 2. Motion of a square and a rectangular block

FIGURE 3. Release of a square block at 45 degree angle

FIGURE 4. Motion of a square block towards the lines after getting reflected from the side wall of a screen

FIGURE 5. Erasing of a line with which the square block got incident

Ashish B. Pasaya, Kiritkumar R. Bhatt /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |771-775 Page 775

IV. Conclusion
In this paper we presented an innovative algorithm for implementing basic application of VGA for a single user

game and the output that we attained. It further can be extended into an advertisement with real time application or a

1double user game with respective addition of logic through NIOS-II processor. We interfaced NIOS-II with

required peripheral through FPGA using HDL languages and used C as a language for implementing the innovative

algorithm. So here NIOS-II adds more flexibility along their use with FPGA and reduces the complexity in coding

part especially, which makes it suitable to meet both our hardware and software real-time requirements.

Acknowledgement
Words are often less to revels one’s deep regards. An understanding of work like this is never the outcome of the

efforts of a single person. First off all i would like to thank the Supreme Power, one who has always guided me to

work on the right path of the life. Without his grace this would never come to be today’s realty. This work not have

been possible without the encouragement and able guidance of my supervisor Prof. K.R.Bhatt, his enthusiasm and

optimism made this experience both rewarding and enjoyable. Also my sincere thanks to Mihir Sir and Nirav Sir

(smartech solutions), Vadodara for providing me tools and guidance required in my work.

References
[1] Guohui Wang and Yong Guan, “Designing of VGA Character String Display Module Base on FPGA”,

IEEE 2009.

[2] Cyclone II Device Handbook (PDF) – Altera.

[3] DE2 Development and Education Board User Manual.

[4] NIOS II Software Developer’s Handbook (PDF) – Altera.

[5] Fawcett, B., “FPGAs as Reconfigurable Processing Elements”, Circuits and Device Magazine, March 1996,

pp. 8–10.

[6] Van-Huan Tran and Xuan-Tu Tran, “An Efficient Architecture Design for VGA Monitor Controller”, IEEE

2011.

[7] Babu T Chacko and Siddharth Shelly “Real-Time Video Filtering and Overlay Character Generation on

FPGA”, IEEE 2011.

[8] A. D. Ioan, “New Techniques for Implementation of Hardware algorithms inside FPGA Circuits”, Advance

in Electrical and Computer Engineering, Vol. 10, No. 2, Suceava, Romania, 2010.

