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Abstract:  
The form of Physical property tensors invariant under point groups and their Subgroups can determine the basis for the 
classification of domain pairs in ferroic Crystals. In a ferroic Crystal containing two or more equally stable domains of the 
same structure but of different spatial orientation, macroscopic tensorial physical properties that are different in domains, 
determine a tensor distinction of the domains. In this paper, we have calculated the ferrotoroidic tensor pairs, using double 
Coset decomposition of all 324 ferroic Species, taking 32 grey groups as prototypic point groups. 
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Introduction:    
A Ferroic phase transition is a phase transition of a crystalline structure from a phase of higher point group symmetry G to a 
phase of lower point group symmetry F. In the lower symmetry phase there are   n = |G| / |F|, single domain states S1, S2 …… 
Sn.  Where |G| and |F| denote the number of elements in G and F. A ferroic Crystal contains two or more equally stable 
domains of volumes of the same homogeneous crystalline structure but of the different spatial orientations. 
Tensor distinction had been discussed by Aizu [1] subsequently Litvin have extended and evaluated tensor distinction by 
magnetization, polarization and strain in a ferroic phase transition and also included tenor distinction by toroidal moment. 
Here ferrotoroidic tensor pairs for all 324 ferroic species by using double coset decomposition are calculated. A crystal, 
regarded as a thermodynamic system, any physical property can be defined by a relation between two measurable quantities. 
A Crystal is an anisotropic medium, means that the response of a Crystal to an external ‘force’ depends not only on the 
magnitude of that force but also on its orientation relative to the Crystal axes. Domain states may be distinguished by the 
values of components of certain spontaneous macroscopic tensorial properties. Ferrotoroidic type with toroidal moment “av” 
for all 324 ferroic species are calculated, taking grey group as the prototypic point group since “a” have no effect on ordinary 
32 point groups. So, we have consider grey groups, Here “V” denotes a polar Vector; “a” denotes zero rank tensors that 
change sign under time inversion. A magnetic toroidal moment represents a vector like electromagnetic multipole moment 
which breaks both space and time reversal symmetries simultaneously. Magnetic toroidal moment in solids have increased 
attention due to its potential relevance in the context of multiferroic materials and magneto electric coupling. The toroidal 
moment is ideally suited to discuss magneto structural or magneto electric coupling, it has been proposed as the primary order 
parameter for the low temperature phase transition from a ferroelectric into a simultaneously ferroelectric and ferromagnetic. 
This means that ferrotoroidicity is the fundamental form of ferroic order, equivalent to ferromagnetism, ferroelectricity, and 
ferroelasticity. A theoretical analysis of magnetic toroidal moments in periodic system, in the limit the toroidal moments are 
caused by a time and space reversal symmetry breaking arrangement of localized magnetic dipole moments. The toroidal 
property is exhibited in the crystals BaNIF4, LICOPO4, GaFeo3, and BIFeo3. All these materials have been discussed in 
context of multiferroics, magneto-electric coupling or ferrotoidics, by observation of ferrotoroidic domins in this material 
using nonlinear optical techniques. The material LICOPO4 crystallizes in the oliving structure with in the orthorhombic space 
group Pnma, it is originally believed that magnetic moments of the four Co ions in the Unit Cell are antiferromagnetically 
aligned along the orthorhombic direction.  
G is one of the 32 Crystallographic point group and 11 is a group consisting of identity and time inversion R2. The direct 
product of G and 11, which is designated by G11 is known as grey group and 32 point groups in which R2 does not occur 
explicitly nor in combination with Symmetry operations are known as ordinary point groups. The 58 groups in which R2 
Occurs implicitly are known as magnetic variants of the 32 ordinary point groups. The 32 ordinary and 58 magnetic Variants 
are known as magnetic point groups. Shubnikov (1951) discussed point groups are 122, where the ordinary point groups are 
32, the grey groups are 32 and the magnetic point groups are 58. 
Every time Symmetry point group is a prototypic point group. 
Let H be a point group of an orientation state “S” and a subgroup of prototypic point group G11. Then H is called the ferroic 
point group. All different ways in which the elements of the ferroic point group correspond to the elements of the Prototypic 
point groups gives so many possible species and they are denoted by G11 FH. 
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Representative Tensor Pairs: 
Let G be the prototypic point group of the crystal and H be the ferroic point group of the one of the domains.  H (i), i= 1, 2 …q, 
denote the point groups of each of the domains with H (1) = H. Let T denote a spontaneous physical property tensor which 
arises in the low symmetry phase of the crystal. Denote by T (i), i = 1,2………q, the specific form of the tensor T 
characterizing each of the q domains, and denote T (1) = T. 
All pairs of tensors having the same mutual relationship can be considered as a single class of tensor pairs and are called a 
class of crystallographically equivalent tensors pairs (Litvin and Wike, 1989). A single tensor pair, called a representative 
tensor pair  is chosen from each class to represent the mutual relationship between all tensor pairs in that class.  
All ordered tensor pairs could be partitioned into classes of crystallographically equivalent tensor pairs. Two tensor pairs (T(i), 
T(j) ) and (T(i1), T(j1) ) are said to be crystallographically equivalent with respect to G and to belong to the same class of ordered 
tensor pairs, if there is an element g of G such that (T(i), T(j) )  = (gT (i1) , gT(j1) ) that is, if T (i) = g T (i1) and T (j) = g T (j1). 
Let Gτ  denote the stabilizer of T in G, this subgroup Gτ of G is the set of all elements g of G which leave T invariant i.e. 
gT=T. If Gτ =H then T is a full physical property tensor and there are qT = q distinct forms of the tensor T i.e. each of the few 
domains is characterized by distinct form of the tensor T. If H is a subgroup Gτ then T is a partial physical property tensor and 
there are qτ ≤ q distinct forms of the tensor T by Ta (d) a = 1,2,……..qτ and choose Td

(1) = T(1) = T. 
All  ordered distinct tensor pairs (Td

(a), Td
(b)) could be partitioned into classes of crystallographically  equivalent ordered 

distinct tensor pairs in the same manner as (T(i), T(j)). The number of classes ordered distinct tensor pairs is same as the number 
of classes of tensor pairs (Litvin and Wike 1989). 
Let G be the prototypic point group, H is the ferric point group and T is the specific form of the physical property tensor T that 
keeps H invariant. The number N of crystallographically equivalent ordered distinct tensor pair classes is equal to the number 
of double cosets in the double coset decomposition of G with respect to Gτ. 
G = Gτ E Gτ + Gτ g1 Gτ +……. Gτ gN Gτ 
Where Gτ is the stabilizer of T in G and gk , k= 1,2,……N are the double coset representatives . Tables of the coset and double 
coset decomposition of the 32 cyrystallographic point groups with respect to one of the each set of conjugate sub groups were 
given by janovee and Dvorakova (1974). 
Litvin S.Y and Litvin (1990) have tabulated the representative tensor pairs (T, gk T ) for all classes of tensor pairs for all point 
groups G and sub groups H and all physical property tensor T of rank 0,1and 2. 

Example: Ferrotoroidic tensor pairs for the ferroic species: 4/m11F21 

Consider the ferroic species 4/m11F21, where 4/m11 is prototypic point group and 21 is a ferroic point group and the stabilizer 
Gτ is 21/m. The number of distinct tensor pair classes are 4 .The double coset decomposition of 4/m11 with respect to the 
stabilizer 21/m is given by 
G = 4/m11 = (21/m) E (21/m) + (21/m) C+

4z (21/m) + (21/m) R2 (21/m) + (21/m) R2 C+
4z (21/m) 

Since form, 21/m ferroic point groups, the stabilizer is 21/m so that decomposition is w.r.t to 21/m is for these groups 
Table 1: ferrotoroidic tensor pairs for ferroic species 4/m11 F 21; 4/m11 Fm; 4/m11 F 21/m 

S No Prototypic 
point group, G 

Ferroic 
Point group, 

H 

 
Stabilizer Double coset 

elements Tensor Pairs 

1 4/m11 
21 
m 

21/m 

 
 

21/m E, C+
4z,   

R2, R2 C+
4z 

 
(T₁, T₂, O )  ( T₁, T₂, O ); 
( T₁, T₂, O ) (-T₂, T₁,  O); 
(T₁, T₂, O )  (-T₁, -T₂, O );   
( T₁, T₂, O ) (T₂, -T₁,  O) 
 

 
Table 2 gives the list of all the Tensor pair representatives of toroidic physical property tensors. In the below mentioned table 
2  the 2nd column represents Prototypic point group “G”, 3rd column represents the ferroic point group “H” , 4th column 
represents the Stabilizer GT, 5th column represents the Double Coset elements and 6th column represents the Tensor Pairs.  
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Table 2 
 

S No 
Prototypic 

Point Group  
G 

Ferroic Point 
Group  

H 

Stabilizer 
Gτ 

Double Coset 
elements 

 
Tensor Pairs 

1.       11 1 1 E , R2 (T₁,T₂,T₃)(-T₁,-T₂,-T₃) ; (T₁,T₂,T₃)(T₁,T₂,T₃) 

2.       ī11 1 ī 1 E , R2 (T₁,T₂,T₃)(-T₁,-T₂,-T₃);(T₁,T₂,T₃)(T₁,T₂,T₃) 

3.      211 1  
1 

E ,C2z , R2 ,  
R2 C2z 

(T₁,T₂,T₃)(-T₁,-T₂,T₃);(T₁,T₂,T₃)(-T₁,-T₂,-T₃) 
(T₁,T₂,T₃)(T₁,T₂,T₃);(T₁,T₂,T₃)(T₁,T₂,-T₃) 

      211 2 2 E , R2 (0,0,T₃)(0,0,-T₃);(0,0,T₃)(0,0,T₃) 

      211 21 21 E , R2 (0,0,T₃)(0,0,-T₃);(0,0,T₃)(0,0,T₃) 

4      m11 m m E,R2 (T₁,T₂,T3)(-T₁,-T₂,-T3) 

      m11             m1 m1 E,R2 (T₁,T₂,T3)(-T₁,-T₂,-T3) 

5. 2/m11 1 
 11 

 
11 

E, R2 ,C2z ,R2 C2z (T₁,T₂,T₃)(-T₁,-T₂,-T₃);(T₁,T₂,T₃) (-T₁,-T₂,-T₃); 
 (T₁,T₂,T₃) (-T₁,-T₂,T₃);(T₁,T₂,T₃) (T₁,T₂,-T₃) 

 2/m11 

2 
m1 

2/m1 
 

 
2/m1 

 

 
E,R2 (T₁,T₂,T₃)(-T₁,-T₂,-T₃) 

 

 2/m11 
21 
m 

21/m 

21/m E,R2 
(T₁,T₂,0)(T₁,T₂,0) ;(T₁,T₂,0)(-T₁,-T₂,0) 

6 22211 1 

 
 

1 

E,C2X,C2Y,C2Z, 
R2C2X,R2C2Y, 

R2C2Z, R2 

(T₁,T₂,T₃)(-T₁,-T₂,-T₃);(T₁,T₂,T₃) (-T₁,T₂,-T₃);  
(T₁,T₂,T₃) (-T₁,-T₂,T₃);(T₁,T₂,T₃);(-T₁,-T₂,-T₃); 
(T₁,T₂,T₃);(-T₁,T₂,T₃);(T₁,T₂,T₃);(T-₁,T₂,T₃); 
(T₁,T₂,T₃);(T₁,T₂,-T₃);(T₁,T₂,T₃)(T₁,T₂,T₃) 
 

 22211 21
 

 
21 

 
E,R2,C2Y,R2C2Y 

(T₁,T₂,0)(-T₁,-T₂,0); (T₁,T₂,0)(-T₁,T₂,0); 
(T₁,T₂,0)(-T₁,-T₂,0); (T₁,T₂,0)(T₁,T₂,0) 
 

7 mm211 2 
mm2 

mm2 E,R2 (0,0,T₃)(0,0,-T₃);(0,0,T₃)(0,0,T₃) 

 mm211 m m E,C2Z ,R2,R2C2Z 0, T₂,T₃)(0, -T₂,T₃);(0, T₂,T₃)(0, -T₂,-T₃); 
(0, T₂,T₃)(0, T₂,-T₃);(0, T₂,T₃)(0, T₂,T₃) 

 mm211 m1m21  
m1m21 

 
E,R2 

(0, T₂,0)(0, -T₂,0); (0, T₂,0)(0, T₂,0) 

8. mmm11 

 
1 
11 

 
 

11 

E,C2X,C2Y,C2Z, 
R2C2X,R2C2Y, 

R2C2Z 

(T₁,T₂,T₃)(T₁,-T₂,-T₃);(T₁,T₂,T₃)(-T₁,T₂,-T₃); 
(T₁,T₂,T₃)(-T₁,-T₂,T₃);(T₁,T₂,T₃)(-T₁,-T₂,-T₃); 
(T₁,T₂,T₃)(-T₁,T₂,-T₃);(T₁,T₂,T₃)(T₁,-T₂,T₃); 
(T₁,T₂,T₃)(T₁,T₂,-T₃) 
 
 

 mmm11 

2 
m1 
2/m1 
21212 
mm2 
mmm1 

 
 
 

mmm1 

 
 
 

E,R2 
(0,0,T₃)(0,0,T₃) ;(0,0,T₃)(0,0,-T₃) 

 mmm11 21 
m 

 
 

 
 (T₁,T₂,0)(T₁,T₂,0) ;(T₁,T₂,0)(-T₁,-T₂,0) 
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21/m 
m1m21 

 

m1m21 
 
 

E,R2 

9. 411 1 

 
 

1 

E,C+
4z , C-

4z ,C2Z 
R2  R2C+

4z,R2C-
4z 

R2C2Z 

(T₁,T₂,T₃)(-T₂,T₁,T₃);(T₁,T₂,T₃)(T₂,-T₁,T₃); 
(T₁,T₂,T₃)(-T₂,-T₁,T₃);(T₁,T₂,T₃)(-T₂,T₁,-T₃); 
(T₁,T₂,T₃)(T₂,-T₁,-T₃);(T₁,T₂,T₃)(-T₂,T₁,-T₃); 
(T₁,T₂,T₃)(T₁,T₂,-T₃);(T₁,T₂,T₃)(T₁,T₂,T₃); 

 411 2 
4 

 
4 

 
E,R2 

(0,0,T₃)(0,0,T₃); (0,0,T₃)(0,0,-T₃) 

 411  
21 

 
21 

E,R2,C+
4z , 

R2C+
4z 

  

(T₁,T₂,0)(-T₁,-T₂,0); (T₁,T₂,0)( -T₂, T₁,0); 
(T₁,T₂,0)( T₂, -T₁,0); (T₁,T₂,0)(T₁,T₂,0) 

10. 

 
 
411 1 

 
 

1 

 
E,S-

4Z, S+
4Z , C2Z 

,R2, R2S-
4Z, 

R2S+
4Z, 

R2C2Z 

(T₁,T₂,T₃)(T₁,T₂,T₃); 
(T₁,T₂,T₃)(T₂,-T₁,-T₃);(T₁,T₂,T₃)(-T₂,T₁,-T₃); 
(T₁,T₂,T₃)( -T₁, -T₂,T₃);(T₁,T₂,T₃)( -T₁, -T₂,-T₃); 
(T₁,T₂,T₃)(-T₂,T₁,T₃);(T₁,T₂,T₃)(T₂,-T₁,T₃); 
(T₁,T₂,T₃)( T₁, T₂,-T₃) 

 
 
 
411 

 
2 
41 

 
41 

 
E,R2 (0,0,T₃)(0,0,T₃); (0,0,T₃)(0,0,-T₃) 

  
411 

 
21 

 
21 

E,S+
4Z,R2, R2S+

4Z (T₁,T₂,0)(T₁,T₂,0); (T₁,T₂,0)( -T₂, T₁,0); 
(T₁,T₂,0)( -T₁, -T₂,0); (T₁,T₂,0)( T₂,-T₁,0) 

11. 4/m11 

 
1 
11 

 
    11 

E, C-
4Z,  C4Z  C2Z 

R2, R2 C+
4Z,   

 R2 C-
4Z, R2 C2Z 

(T₁,T₂,T₃)(-T₁,-T₂,-T₃); (T₁,T₂,T₃)(-T₂,T₁,T₃); 
(T₁,T₂,T₃)(T₂,-T₁,-T₃);(T₁,T₂,T₃) (T₁,T₂,T₃); 
(T₁,T₂,T₃)(T₂,-T₁,T₃);(T₁,T₂,T₃)(-T₂,T₁,-T₃); 
(T₁,T₂,T₃)(T₁,T₂,-T₃), (T₁,T₂,T₃)(-T₁,-T₂,T₃) 

 4/m11 

2 
m1 
2/m1 
4 
41 

4/m1 

 
 
 
4/m1 

 
 

 
E,R2 

(T₁,T₂,T₃)(T₁,T₂,T₃);(T₁,T₂,T₃)(-T₁,-T₂,-T₃) 

c. 4/m11 

 
21 
m 
21/m 
 

 
 
21/m 
 

 
E, C+

4z ,  
R2, R2C+

4z 
(T₁,T₂,0)( -T₂, T₁,0); (T₁,T₂,0)( T₂, -T₁,0); 
(T₁,T₂,0)( -T₁,-T₂,0); (T₁,T₂,0)( T₁,T₂,0); 
 

12. 42211 1 

 
 
1 

E, C+
4z , C-

4z , 
C2Z , C2x , C2y , C2a 

, C2b , 
R2 , R2 C+

4Z,   
 R2 C-

4Z , R2 C2Z , 
R2 C2x, R2 C2y,R2 
C2a,R2 C2b 

(T₁,T₂,T₃)(T₁,T₂,T₃) 
(T₁,T₂,T₃)(-T₂,T₁,T₃) ; (T₁,T₂,T₃)(T₂,-T₁,T₃) ; 
(T₁,T₂,T₃)(-T₁,-T₂,-T₃);(T₁,T₂,T₃)(T₁,-T₂,-T₃); 
(T₁,T₂,T₃)(-T₁,T₂,-T₃);(T₁,T₂,T₃)(T₂,T₁,-T₃) ; 
(T₁,T₂,T₃)(-T₂,-T₁,-T₃);(T₁,T₂,T₃)(T₂,-T₁,-T₃); 
(T₁,T₂,T₃)(-T₂,T₁,-T₃);(T₁,T₂,T₃)( T₂-T₁, -T₃); 
(T₁,T₂,T₃)(-T₁,T₂,T₃);(T₁,T₂,T₃)(T₁,-T₂,T₃); 
(T₁,T₂,T₃)(-T₂,-T₁,T₃);(T₁,T₂,T₃)(T₂,T₁,T₃) 

 42211 

2 
2121 2 
4 
42121 

 
 
42121 

 
 
E,R2 

(T₁,T₂,T₃)(T₁,T₂,T₃) ;(T₁,T₂,T₃)(-T₁,-T₂,-T₃) 

 42211 
 
21 
 

 
21 
 

 
E, C+

4z 
,c2x,c2a,R2, 
R2C+

4z, R2 c2x, R2 
c2a 

(T₁,T₂,0) (T₁,T₂,0); 
(T₁,T₂,0)( -T₂, T₁,0); (T₁,T₂,0)( T₁,-T₂,0); 
(T₁,T₂,0)( T₂, T₁,0); (T₁,T₂,0)( -T₁,-T₂, 0); 
(T₁,T₂,0)( T₂, -T₁,0); (T₁,T₂,0)( -T₁,T₂, 0); 
(T₁,T₂,0)(- T₂, T₁,0) 
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13  
4mm11 

2 
mm2 
4 
4mm 

 
 
4mm 

 
 
E,R2 

(0,0,T₃) (0,0,T₃) ;(0,0,T₃)(0,0,-T₃) 

 
 
4mm11 21 

 
21 

E, C+
4z, R2, R2 

C+
4z, R2, ∑x, 

R2,∑da. 

(T₁,T₂,0)( -T₂, T₁,0); (T₁,T₂,0)( T₂, -T₁,0); 
(T₁,T₂,0)( -T₁,-T₂,0); (T₁,T₂,0)( T₁,T₂,0); 
(T₁,T₂,0)(T₁,T₂,0)( -T₂, T₁,0) 

 

 
 
4mmm11 m (x) 

 
m 

E, C+
4z, C-

4z, C-
2z, 

R2, R2 C+
4z,  R2 C-

4z, R2 C2z, 

(0, T₂,T₃)(-T₂,0, T₃);(0, T₂,T₃)(T₂,0, T₃); 
(0, T₂,T₃)(0, T₂,-T₃);(0, T₂,T₃)(0, -T₂,T₃); 
(0, T₂,T₃)(T₂,0, -T₃);(0, T₂,T₃)(-T₂,0, -T₃); 
(0, T₂,T₃)(0, T₂, T₃);(0, T₂,T₃)(0, -T₂, -T₃); 

  
4mm11 m 1 m 21  

m 1 m2 1 
E, C+

4z, R2, R2 
C+

4z, 
(0, T₂,0)(, -T₂,0, 0); (0, T₂,0)( T₂,0, 0); 
 (0, T₂,0) (0, T₂, 0); (0, T₂,0) (0, -T₂,0) 

14 

 
 
 
 
42m11 

2(P) 
m 
21212(p) 
mm2 
41 

4121m 
 

 
 
 
 
4121m 

 
 
 
 
     E,R2 

(0,0,T₃)(0,0,T₃);(0,0,T₃)(0,0,-T₃) 

 

 
42m11  

2(s) 
 

 
 
2 
 

 
E, C2z ,s+

4z,R2, 
R2C2z, R2 s+

4z,  

(T1,0,0,) (-T1,0,0); (T10,0,) (0,T1,0); 
(T1,0,0,) (T1,0,0); (T1,0,0,) (0,-T1,0); 
 

 

 
42m11  

21(s) 
 

 
 
21 
 

 
E, C2z ,s+

4z,R2, 
R2C2z, R2 s4z, 

(T1,0,0,) (-T1,0,0); (T10,0,) (0,T1,0); 
(T1,0,0,) (T1,0,0); (T1,0,0,) (0,-T1,0); 
(0, T₂,T₃)(0, T₂,T₃);(0, T₂,T₃)(0, -T₂,T₃); 
(0, T₂,T₃)( -T₂,0,-T₃);(0, T₂,T₃)(0, -T₂, -T₃); 
(0, T₂,T₃)(0, T₂,-T₃);(0, T₂,T₃)( T₂,0, -T₃) 

15. 4/mmm11 

 
 
 
1 
11 

 
 
11 

 
 
E, C+

4z, C-
4z, C2z, 

C2x ,C2y , C2a , 
C2b ,R2,  
R2 C+

4z, R2 C-
4z, 

R2 C2z, R2C2x 
,R2C2y , R2C2a , 
R2C2b 

(T₁,T₂,T₃)(T₁,T₂,T₃); 
(T₁,T₂,T₃)(-T₂,T₁,T₃);(T₁,T₂,T₃)(T₂,-T₁,T₃); 
(T₁,T₂,-T₃)(-T₁,-T₂,T₃);(T₁,T₂,T₃)(T₂,T₁,-T₃); 
(T₁,T₂,T₃)(-T₂,-T₁,-T₃);(T₁,T₂,T₃)(-T₁,-T₂,-T₃); 
(T₁,T₂,T₃)(T₂,-T₁,-T₃);(T₁,T₂,T₃)(-T₂,T₁,T₃); 
(T₁,T₂,T₃)(T₁,T₂,-T₃);(T₁,T₂,T₃)(-T₂,-T₁,T₃); 
(T₁,T₂,T₃)(T₂,T₁,T₃);(T₁,T₂,T₃)(T₁,-T₂,-T₃); 
(T₁,T₂,T₃)(-T₁,T₂,T₃);(T₁,T₂,T₃)(-T₁,T₂,-T₃); 
(T₁,T₂,T₃)(T₁,-T₂,T₃) 
 

 4/mmm11 

42121 
4mm 
421m 
4/m1mm 
4 
4/m1 
2(p) 
m 1 (p) 
2/m 1 (p) 
2121 2(p) 
2121 2(s) 
mm2(p) 
m1m21(ps) 
4 
mmm1 (p) 

 
 
 
 
 
 
4/m1mm 

      
 
 
 
 
 
E,R2 

(0,0,T₃)(0,0,T₃) ;(0,0,T₃)(0,0,-T₃) 
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16. 311 1 

 
1 
 

 
E, C+

3,C-
3  

R2 c+
3 , R2 c-

3 
   

(T₁,T₂,T₃)(T₁,T₂,T₃);(T₁,T₂,T₃)(-T₂,T₁,-T₂,T₃); 
(T₁,T₂,T₃)(-T₁,+T₂,-T1,T₃);(T₁,T₂,T₃)(-T₁,-T₂,-T₃) 
(T₁,T₂,T₃)(T₂,-T₁,+T₂,-T₃); 
(T₁,T₂,T₃)(T₁,-T₂,+T1,-T₃) 

 311 3 3 E,R2 (0,0,T₃)(0,0,-T₃);(0,0,T₃)(0,0,T₃) 

17. 

 
311 

1 
11 

 
 11 

 
E,R2, c+

3, c-
3 , R2 

c+
3 , R2 c-

3 
   

(T₁,T₂,T₃)(-T₂,T₁,-T₂,T₃); 
(T₁,T₂,T₃)(-T₁,+T₂,-T1,T₃); 
(T₁,T₂,T₃)(T₁,T₂,T₃);(T₁,T₂,T₃)(T₂,-T₁,+T₂,-T₃); 
(T₁,T₂,T₃)(T₁,-T₂,T1,-T₃) 

 

 
3 11 

 
3 
 
31 

 
 
 31 

 
 
E,R2 

 
 
(0,0,T₃)(0,0,T₃); (0,0,T₃)(0,0,-T₃) 
 

18 
 
3211 2 

 
 
2 

 
E,C+

3 ,R2 , R2 C+
3 

(0, T2 ,0,)(-T2,-T2,-0); (0, -T2 ,0)(T2,T2,-0); 
(0, T2 ,0,) (0, T2 ,0,); (0, T2 ,0,) (0, -T2 ,0,)   

 3211 
21 
3 
321 

 
 
321 

 
 
E,R2 (0,0,T₃)(0,0,T₃) ;(0,0,T₃)(0,0,-T₃) 

19 3m11 m 

 
 
 
 
 
m 
 

 
 
 
 
E,C+

3 ,R2 ,  
R2 C+

3 

((T1+T2) ,0,T3), (0, (T1+T2),T3);  
        2                            2        
   
((T1+T2) ,0,T3), ( -(T1+T2),0,-T3);  
        2                            2        
((T1+T2) ,0,T3), (0,- (T1+T2),T3) 
        2                            2        
((T1+T2) ,0,T3), ((T1+T2) ,0,T3) 
        2                            2        
 

  
3m11 m1  

m1 
E,C+

3 ,R2 ,  
R2 C+

3 
(0, T2 ,0,)(-T2,-T2,-0); (0, T2 ,0)(0,-T2,-0); 
(0, T2 ,0,) (T2, T2 ,0,); (0, T2 ,0,) (0, T2 ,0,) 

 3m11 3 
3m 

 
3m 

 
E,R2 

 
(0,0,T₃)(0,0,-T₃);(0,0,T₃)(0,0,T₃) 
 

20 

 
3m11 

 
2 
m1 

2/m1 

 
 
2/m1 

 
 
E,C+

3 ,R2 ,  
R2 C+

3 

(T₁,T₂,0)( T₂, T2,0); 
(T₁,T₂,0)( -T₂, -T2,0);  
(T1,T₂,0)( -T1, -T2,0); 
(T₁,T₂,0)( T₂, T2,0) 

 
Similarly, ferrotoroidic tensor pairs for all 324 ferrotoroidic Ferroic species are calculated using the above procedure, here 
tensor pairs for 108 ferroic spices are given table 2 and rest of the tables are available with the authors. 

3. Conclusions: 
D.B. Litvin has calculated tensor distinction of domains in ferroic crystals in this paper the ferrotoroidic tensor pairs are 
calculated using double coset decompastion for all the 324 ferrotoroidic ferroic species,where 32 grey groups are the 
prototypic point groups. 
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