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I. Introduction and” preliminaries 
Let G be a graph with n vertices and m edges. The distance between two vertices u and v in G, denoted 

dG(u,v), refers to the length of the shortest path connecting them. The diameter of a graph G, d(G), is defined as 

the maximum distance between any pair of vertices in G. If G is disconnected, the diameter is  d(G)=∞. 
Let V(G) and E(G) represent the vertex set and edge set of the graph G, respectively. The 

neighborhood of a vertex v, denoted NG(v), is the set of vertices adjacent to v, and the degree of vertex v, dG(v), 

is the number of vertices adjacent to it, i.e., dG(v)=|NG(v)|. 

The adjacency matrix of G, denoted A(G), is a square matrix where the entry Auv=1 if there is an edge between 

vertices u and v, and Auv=0 otherwise. The degree matrix D(G) is a diagonal matrix where the diagonal entry 

Dvv represents the degree of vertex v. The Laplacian matrix of G, denoted L(G), is defined as: 

L(G)=D(G)−A(G). 

This matrix has at least one eigenvalue equal to zero, which usually corresponds to the constant eigenvector (the 

all-ones vector). It is unique and positive semi-definite. 

 

The eigenvalues of the Laplacian matrix L(G) can be ordered as: 

μ1(G)≥μ2(G)≥ …………………≥μn−1(G)≥μn(G)=0 

where μ1(G) is the Laplacian spectral radius and μn−1(G) is the algebraic connectivity of G. The algebraic 

Abstract: 

The Laplacian spectrum of a graph refers to the spectrum of its Laplacian matrix, which is a matrix 

derived from the graph's adjacency matrix. This spectrum carries important information about the 

graph's structure and properties. Here are several key applications of the Laplacian spectrum in 

graph theory and related fields. The spread of diseases through social or biological networks can be 

studied using the Laplacian spectrum. Eigenvalues and eigenvectors of the Laplacian matrix help in 

understanding the dynamics of disease transmission and designing effective intervention strategies. 

The eigenvalues and eigenvectors of the Laplacian matrix can help identify key nodes (individuals or 

locations) within a social or biological network that play crucial roles in disease transmission. High 

eigenvector centrality indicates nodes that are influential in spreading the disease and are therefore 

important targets for intervention strategies such as vaccination or quarantine. The Laplacian 

spectrum provides insights into the resilience of the network to disease outbreaks. Networks with 

higher algebraic connectivity (higher values of the second smallest eigenvalue) are more tightly 

connected, potentially leading to faster disease spread. Understanding these properties helps in 

assessing the risk of widespread outbreaks and planning mitigation measures. 
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connectivity, μn−1(G), is the second smallest eigenvalue of L(G), and it provides a measure of how well-

connected the graph is. 

For the complement graph Gc of G, where two vertices are adjacent if and only if they are not adjacent in G, the 

eigenvalues of the Laplacian matrix L(Gc) are related to those of L(G). Specifically, the eigenvalues of L(Gc) are 

given by: 

n−μ1(G),n−μ2(G),…….,n−μn(G) 

These eigenvalues are arranged as: 

n−μn(G)=0 ≤ n−μn−1(G) ≤ ⋯≤ n−μ1(G) 

The Laplacian spread of a graph G is defined as the difference between the largest eigenvalue 

μ1(G) and the second-largest eigenvalue μn−1(G): 

Laplacian spread=μ1(G)−μn−1(G) 

A larger Laplacian spread indicates a more sparsely linked or organised network. This measure represents the 

spread or dispersion of the eigenvalues of the Laplacian matrix. 

 

Clearly, μ 1 ( G ) − μ n − 1 ( G ) = μ 1 ( G ) + μ 1 ( G c ) − n = n − [μ n − 1 ( G ) + μ n − 1 ( G c )] = 

μ1 (G c) − μ n − 1 (G c ). 

 

II. Upper bounds of Laplacian spread 

Lemma 2.1: 

Let G be a graph with n≥2 vertices. The largest eigenvalue of G, denoted μ1(G), satisfies 

μ1(G)≤n. Equality holds iff the complement graph Gc has infinite diameter (i.e., d(Gc)=∞). 

Theorem 2.2: If the diameter of G, denoted d(G), is infinite, then the difference between the largest and the 

second-largest Laplacian eigenvalues of G, μ1(G)−μn−1(G), is bounded above by n−1. Equality occurs iff G is the 

disjoint union of an isolated vertex K1 and a graph H with n−1 vertices, where the complement of H, Hc, has 

infinite diameter. 

Proof: 

Since d(G)=∞, by Lemma 2.1, we know that μ1(Gc)=n, which implies that 

μn−1(G)=n−μ1(Gc)=0. Let the components of G be G1,G2,…,Gs, where s≥2. Then, the largest eigenvalue of G is 

bounded as follows: 

μ1(G)=μ1(Gi)≤∣V(Gi)∣≤n−1. 

By Lemma 2.1, we have μ1(G)=n−1 if and only if G=K1∪H, where μ1(H)=∣V(H)∣=n−1, which implies that 

d(Hc)=∞. Furthermore, when d(G)=1, we have G=Kn, and clearly, 

μ1(Kn) − μn−1(Kn) = n−n = 0.nd v ∈V(Gi+1) for i=1,2,…,s−1. Specifically, G1∇G2 denotesthejoin ofgraphs G1and 

G2.
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Lemma 2.3: 

Let G be a non-empty graph with vertex set {v1,v2,…,vn}. Then, the largest Laplacian eigenvalue of G, μ1(G), 

satisfies: 

μ1(G)≤dG(vi)+dG(vj)−| NG(vi)∩NG(vj) |, 

where NG(vi) and NG(vj) are the neighborhoods of vertices vi and vj, respectively. 

Let  G1,G2,…,Gs(with s≥2) be pairwise disjoint graphs. The graph G1∇ G2∇ ⋯∇ Gs is obtained by adding edges 

between all vertices u ϵV(Gi) and vϵV(Gi+1) for i=1,2,…,s−1. Specifically, 

G1∇ G2 denotes the join of graphs G1 and G2. 

Theorem 2.4: 

If d(G)=2, then: 

μ1(G)−μn−1(G)≤n−1, 

with equality iff G=K1∇ H, where H is a disconnected graph on n−1 vertices. 

Proof: 

If d(Gc)=∞, by Theorem 2.2, we have: 

μ1(G)−μn−1(G)=μ1(Gc)−μn−1(Gc) ≤ n−1, 

and equality holds iff Gc=K1∪Hc, where |V(Hc)|=n−1 and d(H*c) = ∞ . This implies that 

μ1(G)−μn−1(G)=n−1 if and only if G=K1∇ H, where |V(H)| =n−1 and d(H)=∞. 

Now, assume that Gc is connected. By Lemma 2.3, we have: 

μ1(Gc)≤dG
c(vi)+dG

c(vj)−|NG
c(vi)∩NG

c(vj)| = |NG
c(vi)∪NG

c(vj)|. 

Since d(G)=2, for any pair of non-adjacent vertices vi and vj in G, they share common neighbors, meaning |NG

(vi)∩NG(vj)| ≥ 1. This implies that for any pair of adjacent vertices vi andvj in Gc, |NG
c(vi)∪NG

c(vj)| ≤n−1. 

Therefore, μ1(Gc) ≤ n−1. Additionally, since Gc is connected, by 

Lemma 2.1, μ1(G) < n, which gives: 

μ1(G)−μn−1(G) = μ1(G) + μ1(Gc)−n < n−1. 
Theorem 2.4:If d (G) = 2, then μ 1 (G) − μ n − 1 (G) ≤ n − 1 with equality if and only if G ≅K 1∇ H, 

where H is a disconnected graph on n − 1 vertices. 

Proof: If d ( G c ) = ∞ , then by Theorem 2.2, μ 1 ( G ) − μ n − 1 ( G ) = μ 1 ( G c ) − μ n − 1 ( G c ) ≤ 

n − 1. Moreover, the equality holds if and only if G c≅ K 1∪ H *, where | V (H *)| = n − 1 and 

d (H *c) = ∞. This implies that μ 1 (G) − μ n − 1 (G) = n − 1 if and only if G≅K 1∇ H, where 

| V (H)| = n − 1 and d (H) = ∞. 

Now assume that G c is connected. 

By Lemma 2.3, we have μ 1 (G c) ≤ 𝑚𝑎𝑥⏟
𝑣𝑖𝑣𝑗𝜖𝐸(𝐺)

{d G 
c (v i) + d G 

c (v j) − | N G 
c (v i) ∩ N G c (v j)|} 

= 𝑚𝑎𝑥⏟
𝑣𝑖𝑣𝑗𝜖𝐸(𝐺)

 {| N G 
c (v i) ∪ N G 

c (v j)|}. 

Since d (G) = 2, each pair of non-adjacent vertices v i, v j of G have common neighbors, that is, 
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| N G (v i) ∩ N G (v j)| ≥ 1. This implies that each pair of adjacent vertices v i, v j of G c have 

| N Gc (v i) ∪ N G c (v j)| ≤ n − 1. Therefore, μ 1 (G c) ≤ n − 1. Besides, since G c is connected, 

by Lemma 2.1, μ 1 (G ) < n. Thus μ 1 ( G ) − μ n − 1 ( G ) = μ 1 ( G ) + μ 1 ( G c ) − n < n − 1. 

Theorem 2.4 implies that μ 1 (G) − μ n − 1 (G) < n − 1 if d (G) = 2 and G c is connected. 

Theorem 2.5: If G is connected and d ( G ) ≥ 4, then μ 1 ( G ) − μ n − 1 ( G ) < n − d + 3 − 
4

𝑛𝑑
 . 

Proof: It is known that μ n − 1 (G) ≥ 
4

𝑛𝑑
for any connected graph G with diameter d (G) ≥ 1. 

Also we have μ 1 (G) < n − d + 3.Thus the inequality holds. 

Lemma 2.6: If d (G) = 3, then μ 1 ( G ) ≤ μ 1 ( K 1∇𝐾𝑛−2

2

∇𝐾𝑛−2

2

∇ K 1 ) , with equality if and only if  G ≅K 1∇ G 

1∇ G 2∇ K 1 for two disjoint graphs G 1 , G 2 with 

| V ( G1 )| =
𝑛−2

2
  and | V ( G 2 )| = 

𝑛−2

2
. 

“Theorem 2.7: If d (G) = 3, then μ 1 (G) − μ n − 1 (G) ≤ n −
16

𝑛 + 4+√(𝑛+4)2−32
 with equality if and only if G≅P 4 , 

namely a path of order 4.” 

Proof: Denote by S a , b the graph obtained from K 2 by attaching a pendant edges to a vertex and b pendant 

edges to the other. That is, S a , b≅ aK 1∇ K 1∇ K 1∇bK 1 . 

Claim 1: For any positive integers a , b with a + b = n − 2 , μ n − 1 ( S a , b ) ≥ 
8

𝑛 + 4+√(𝑛+4)2−32
 ,with equality if and 

only if a = b. In fact, by direct calculation, 

det (μ I n − L ( S a , b )) = μ(μ − 1 ) n − 4 f ( ab , μ) , 

Where f (ab, μ) = μ 3 − (n + 2) μ 2 + (2n + 1 +ab) μ − n. Let μ * (ab) be the minimum real root of 

f (ab , μ) . Note that f ( ab , 1 ) = ab> 0 and f is a polynomial of degree 3 on μ , thus μ * ( ab ) < 1 and hence μ n − 

1 ( S a , b ) = μ * ( ab ) . Now assume that a ≠b, then ab<
(𝑛−2)2

4
. Note that f(ab, μ ) is increasing with ab.Thus 

f(
(𝑛−2)2

4
 , μ * ( ab ) ) > f(ab, μ * ( ab ) ) = 0 .” 

“Similar as above  μ * (
(𝑛−2)2

4
  ) < μ * ( ab ). 

Furthermore f (
(𝑛−2)2

4
 , μ) = (μ -

𝑛

2
 )(-

𝑛+4

2
(μ+2)). 

Thus μ * (
(𝑛−2)2

4
  ) = μ n – 1(

𝑛−2

2
,

𝑛−2

2
) = 

8

𝑛 + 4+√(𝑛+4)2−32
 and the claim holds. 

Now observe that S a, b is the complement graph of K 1∇ K a∇ K b∇ K 1 . Thus by Lemma 2.6 and Claim 1, for 

any graph G with d (G) = 3, 

μ1 (G ) ≤ μ 1 ( K 1∇𝐾𝑛−2

2

∇𝐾𝑛−2

2

∇ K 1 ) = n − μ n − 1 ( ) ≤ n −
8

𝑛 + 4+√(𝑛+4)2−32
with equalities if and only if G ≅K 1∇ 

G 1∇ G 2∇ K 1 and | V (G 1 )| = | V ( G 2 )| =
𝑛−2

2
. 

Since d (G) = 3, we know that 2 ≤ d (G c) ≤ 3. If d (G c) = 2, by Theorem 2.4, 

μ 1 ( G ) − μ n − 1 ( G ) = μ 1 ( G c ) − μ n − 1 ( G c ) < n − 1. Now let d (G c) = 3. By the inequality above, 

μ1 (G c ) ≤ n −
8

𝑛 + 4+√(𝑛+4)2−32
with equality if and only if G c≅K 1∇ G 3∇ G 4∇ K 1 and 

| V (G 3)| = | V (G 4)| =  
𝑛−2

2
 . 

Thus μ 1 (G) − μ n − 1 (G) = μ 1 (G) + μ 1 (G c) − n ≤ n –
16

 𝑛 + 4+√(𝑛+4)2−32
 

Since ( K1∇ G 1∇ G 2∇ K 1 ) c≅ G1
c ∇ K 1∇ K 1∇ G2

c, the equality holds iff G ≅ P4.” 

 

III. Some classes of graphs with diameter 3 
Lemma 3.1: Let G be a connected graph with maximum degree ∆. For a vertex v of G, let 

mG (v) = 𝛴𝑢𝜖𝑁𝐺(𝑣) d G (u)/ d G (v). Then (i) μ 1 ( G ) ≤ max { d G (v) + m G (v)|v 𝜖 V ( G )} . 

(ii) μ1 (G) ≥ ∆ + 1, with equality if and only if ∆ = n − 1. 

“Lemma 3.2: Let S = {v 1 , v 2 , . . . , v s }( s ≥ 2 ) be a vertex subset of a connected graph G such that N G (v 1) = 

N G (v 2 ) =· · · = N G (v s ) . Let G * be the graph obtained from G by adding any 

t (0 ≤ t ≤ 
𝑠(𝑠−1)

2
 ) edges among the vertices in S. Then μ 1 (G *) = μ 1 (G).” 

“A connected graph G is said to be unicyclic if m = n and bicyclic if m = n + 1. 

Lemma 3.3: ( i ) Among all unicyclic  graphs on n vertices with diameter 3, 

K 1∇ 2K 1∇ K 1∇( n − 4 ) K 1 is the unique graph with maximal Laplacian spectral radius. 

( ii ) Among all bicyclic graphs on n (≥ 7 ) vertices with ∆ < n − 1 , K 1∇ 3K 1∇ K 1 ∇( n − 5 ) K 1 is the unique 

graph with maximal Laplacian spectral radius. 

 

Theorem 3.4: If G≅ G 1∇ G 2∇ G 3∇ G 4 for disjoint graphs G i with 𝛴1≤𝑖≤4| V (G i)| = n, 
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Then  μ1 (G) − μ n − 1 (G) < n − 1. 

Proof: Note that G = G 3∇ G 1∇ G 4∇ G 2. For convenience, let | V ( Gi )| = n i , H 1≅ n 1 K 1∇ 
n2 K 1∇ n 3 K 1 ∇ n 4 K 1 and H 2≅ n 3 K 1∇ n 1 K 1∇ n 4 K 1∇ n 2 K 1 . 

Then by Lemma 3.2, μ 1 (G) + μ 1 (G c)=  μ1 ( H 1 ) + μ 1 ( H 2 ) . 

Let u i be a vertex of G i (1 ≤ i ≤ 4). Then 

𝑑𝐻1
 (u1) + 𝑚𝐻1

 (u 1) = n 2 + (n 1 + n 3) ≤ n − 1, 

𝑑𝐻1
 (u2) + 𝑚𝐻1

 (u 2) = n 1 + n 3 +𝑛1

𝑛2+𝑛3(𝑛2+𝑛4)

𝑛1+𝑛3
 = n - 

𝑛1𝑛4

𝑛1+𝑛3
 

𝑑𝐻1
 (u3) +𝑚𝐻1

 (u 3) = n 2 + n 4 +𝑛3

𝑛4+𝑛2(𝑛1+𝑛3)

𝑛2+𝑛4
  = n - 

𝑛1𝑛4

𝑛2+𝑛4
 

𝑑𝐻1
 (u4) + 𝑚𝐻1

 (u 4) = n 3 + (n 2 + n 4) ≤ n − 1. 

Similarly, we have 

𝑑𝐻2
 (u3) +𝑚𝐻2

 (u 3) ≤ n − 1, 

𝑑𝐻2
 (u4) + 𝑚𝐻2

 (u 4) = n −
𝑛2𝑛3

𝑛1+𝑛2
 

𝑑𝐻2
 (u1) + 𝑚𝐻2

 (u 1) = n −
𝑛2𝑛3

𝑛3+𝑛4
 

𝑑𝐻2
 (u2) + 𝑚𝐻2

 (u 2) ≤ n − 1. 

If G ≅ P 4, then by Theorem 2.7, μ 1( P4 ) − μ n − 1 ( P 4 ) < 3. Now let G ≇ P 4. Note that x + y > 1 for any x 𝜖 { 1 

,
𝑛1𝑛4

𝑛1+𝑛3
,

𝑛1𝑛4

𝑛2+𝑛4
}and y 𝜖 { 1 ,

𝑛2𝑛3

𝑛1+𝑛2
 , 

𝑛2𝑛3

𝑛3+𝑛4
 } by Lemma 3.1, we have 

μ 1 ( H 1 ) + μ 1 ( H 2 ) ≤𝑚𝑎𝑥⏟
1≤𝑖≤4

{ 𝑑𝐻1
 ( u i ) + 𝑚𝐻1

 ( u i )} +𝑚𝑎𝑥⏟
1≤𝑖≤4

{ 𝑑𝐻2
( u i )+𝑚𝐻2

(u i )} < 2n − 1 . 

And hence μ 1 ( G ) − μ n − 1 ( G ) = μ 1 ( G ) + μ 1 ( G C ) − n < n − 1. 

Theorem 3.5: Let a, b be positive integers with a ≤ b and a + b = n − 2. If d (G) = 3 and 

μ 1 ( G ) ≤ μ 1 ( K 1∇ a 1∇ K 1∇bK1 ) , then μ 1 ( G ) − μ n − 1 ( G ) < n − 1. 

Proof: For convenience, denote by H a the graph K 1∇aK 1 ∇ K 1∇bK1. 

Claim 2: For positive integers a, b with a ≤ b and a + b = n − 2, μ 1 (H a) ≤ n +
𝑛+√𝑛2−4𝑛+8

2
 

With equality if and only if a = b.” 

Let X be an eigenvector of L (H a) corresponding to μ 1 (H a). Clearly, both X | V (aK 1) and 

X | V (bK 1) are constant vectors. Let x a  (resp. x b) be the component of X corresponding to vertices in V (aK 1 ) 

(resp. V ( bK 1 ) ). Let x 1 (resp. x 2) be the component of X corresponding to the vertex of degree a (resp. a + b). 

Since L (H a) X = μ 1 (H a) X, we have 

(μ1 (H a ) − 2 ) x a = − x 1 − x 2 , 

(μ1 (H a ) − a ) x 1 = − ax a , 

(μ1 (H a) − a − b ) x 2 = − ax a − bxb , 

(μ1 ( H a ) − 1 ) x b = − x 2 . 

“By above equalities and simplifying, we conclude that μ 1 (H a) is the maximum real root of the following 

equation. 

g ( a , μ)≜ μ(μ − 2 )(μ − n + 1 ) − a (μ 2 − n μ + n ) = 0 . 

By Lemma 3.1, μ 1 (H a) > ∆ + 1 = n − 1 for any a. Now assume that μ > n − 1. Then μ 2 − n μ + n > 0 and hence 

g (a, μ) is decreasing with a. Moreover, for any a and μ > n − 1, g (a, μ) is increasing with μ , since g ′ ( a , μ) > 

0. Thus for all μ ≥ μ 1 ( 𝐻𝑛−2

2

 ) and a <
𝑛−2

2
 ≤ b, 

g ( a , μ) ≥ g (a , μ 1 ( 𝐻𝑛−2

2

 ))  >  g (
𝑛−2

2
,μ 1 ( 𝐻𝑛−2

2

 )) = 0 . 

This implies that μ 1 (H a) < μ 1 ( 𝐻𝑛−2

2

 ) for a <
𝑛−2

2
≤ b. Furthermore, 

G (
𝑛−2

2
 , μ) = (μ - 

𝑛

2
 )(μ 2 − n μ + n - 2) 

Thus μ 1 (𝐻𝑛−2

2

) = n +
𝑛+√𝑛2−4𝑛+8

2
  and the claim holds. 

Since d (G) = 3, we know that 2 ≤ d (G c) ≤ 3. If d (G c) = 2, by Theorem 2.4, 

μ 1 ( G ) − μ n − 1 ( G ) = μ 1 ( G c ) − μ n − 1 ( G c ) < n − 1. Now assume that d (G c) = 3. 

By (1) and Claim 2, 

μ 1 ( G ) − μ n − 1 ( G ) = μ 1 ( G ) + μ 1 ( G c ) − n ≤ μ 1 ( H a ) − 
8

𝑛 + 4+√(𝑛+4)2−32
 

Remark 3.6: Note that a ≤ b is an important condition of Theorem 3.5. However, 

for ( n , a , b ) = ( 5 , 2 , 1 ) and ( n , a , b ) = ( 7 , 3 , 2 ) , direct calculations show that 

μ 1 ( H a ) − 
8

𝑛 + 4+√(𝑛+4)2−32
< n − 1 . 

This implies that Theorem 3.5 also holds for these two trivial cases. 

Theorem 3.7: If d (G) = 3 and n − 1 ≤ m ≤ n + 1, then μ 1 (G) − μ n − 1 (G) < n − 1. 
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Proof: (i) m = n − 1. Now G is a tree. Note that any tree with diameter 3 is isomorphic to 

aK1∇ K 1∇ K 1∇bK1 for some pair of positive integers a, b. According to Theorem 3.4, 

μ1 ( G) − μ n − 1 ( G ) < n − 1. 

(ii) m = n. Then G is a unicyclic graph. Since d (G) = 3, by Lemma 3.3, 

μ 1 ( G ) ≤ μ 1 ( K 1∇ 2K 1 ∇ K 1∇( n − 4 ) K 1 ) . 

Thus by Theorem 3.5, if n ≥ 6,  μ1 (G) − μ n − 1 (G) < n − 1. 

Now it remains the case n = 5. By Remark 3.6, we also have the inequality. 

(iii) m = n + 1. Then G is a bicyclic graph. Since d (G) = 3, ∆ < n − 1. By Lemma 3.3, if n ≥ 7, then  μ 1 ( G ) ≤ μ 

1 ( K 1∇ 3K 1∇ K 1∇( n − 5 ) K 1 ) . Thus by Theorem 3.5 and Remark 3.6, 

μ1 ( G ) − μ n − 1 ( G ) < n − 1 for n ≥ 7. If n = 5, then G ≅  K 1∇ K 2∇ K 1∇ K 1 . Thus by Theorem 3.4, the 

inequality holds. Now it remains the case n = 6. There are twelve bicyclic graphs on 6 vertices with diameter 3 

(see Fig. 1). 

By Theorem 3.4, μ 1 ( B i ) − μ n − 1 ( B i ) < n − 1 for 2 ≤ i ≤ 7. And by Matlab, we can find 

μ 1 ( B i ) − μ n − 1 ( B i ) < n − 1 for other B i . 

Theorems 2.4, 2.5 and 3.7 imply the following result, which simultaneously determines the unique tree, 

unicyclic graph and bicyclic graph with maximal Laplacian spread. 

Theorem 3.8: Let G be a connected graph on n (n ≥ 5) vertices and m (n − 1 ≤ m ≤ n + 1) edges. Then 

μ1 (G )−μ n − 1 ( G ) ≤ n − 1, with equality if and only if G is obtained from K 1∇( n − 1 ) K 1 by adding 

m − n + 1 edges. 
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Fig. 1. Bicyclic graphs on 6 vertices with diameter 3. 
 

Theorems 3.4, 3.5 and 3.7 give some classes of graphs with diameter 3 and Laplacian spread less than  n − 1. 

Since  Theorems 2.2, 2.4 and 2.5 shows  that μ 1 ( G ) − μ n − 1 ( G ) ≤ n − 1 as long as d ( G )≠ 3, we may present 

a conjecture as follows.” 

Conjecture 3.9: For any graph G, μ 1 (G) − μ n − 1 (G) ≤ n − 1, with equality if and only if G or G c 

is isomorphic to the join of an isolated vertex and a disconnected graph on n − 1 vertices. 

The study of the spread and control of diseases within populations can benefit from the applicationof the 

Laplacian spectrum in several ways beyond understanding disease transmission dynamics. Here are additional 

applications: 

 

Identifying Key Nodes for Intervention: 
The eigenvalues and eigenvectors of the Laplacian matrix can help identify key nodes (individuals or locations) 

within a social or biological network that play crucial roles in disease transmission. High eigenvector centrality 

indicates nodes that are influential in spreading the disease and are therefore important targets for intervention 

strategies such as vaccination or quarantine. 

 

Assessing Network Resilience: 

The Laplacian spectrum provides insights into the resilience of the network to disease outbreaks. Networks with 

higher algebraic connectivity (higher values of the second smallest eigenvalue)are more tightly connected, 

potentially leading to faster disease spread. Understanding these properties helps in assessing the risk of 

widespread outbreaks and planning mitigation measures. 

Modeling Control Strategies: 

Eigenvalues of the Laplacian matrix can be used in mathematical models to simulate the effectiveness of 

different disease control strategies. For example, they can inform the design of optimal vaccination campaigns 

by targeting individuals based on their network centrality or connectivity. 

Evaluating Community Structure: 

Spectral clustering techniques based on the Laplacian matrix can reveal underlying community structures within 

the network. These communities often have distinct patterns of disease transmission, which can guide tailored 

intervention strategies that account for local interactions and behaviors. 

Comparing Transmission Dynamics: 

By comparing the Laplacian spectra of different networks (e.g., networks in different geographic regions or with 

different demographic compositions), epidemiologists can gain insights into variations in disease transmission 

dynamics. This understanding is crucial for developing region-specific or population-specific interventions. 

 

Optimizing Surveillance Efforts: 

The Laplacian spectrum helps in optimizing surveillance efforts by identifying critical nodes where monitoring 

for disease outbreaks should be intensified. Nodes with high network centrality or specific spectral properties 

may serve as early indicators of potential outbreaks. 

Studying Co-infections and Multi-pathogen Dynamics: 

In situations involving co-infections or multiple pathogens circulating within a population, the Laplacian 

spectrum can assist in modeling and analyzing complex interaction patterns between different diseases. This can 

lead to a better understanding of how co-infections affect disease dynamics and influence intervention strategies. 

 

IV. Conclusion 
Spectral graph theory provides a powerful mathematical framework for analyzing networks, leveraging 

concepts from linear algebra (eigenvalues, eigenvectors and matrix decompositions) to understand complex 

network structures and dynamics. These applications demonstrate its versatility in fields ranging from biology 
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and epidemiology to computer science and optimization, offering insights into network behavior and facilitating 

the design of efficient algorithms and interventions. 
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