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I. Introduction 
Ordinary and partial differential equations (ODEs and PDEs) serve as crucial mathematical tools for analyzing 

and describing a wide range of problems in physics and engineering [1-3]. 

The methods for solving ordinary differential equations (ODEs) have evolved over time, transitioning 

from analytical approaches to conventional numerical methods and eventually to neural network techniques. 

Analytical methods such as the series [4, 5] and the constant transform [4] methods may fail in complicate 

cases. Unlike traditional rigorous analytical methods, numerical methods primarily employed difference 

techniques, such as converting ODEs into recursive equations, and can solve ODEs extensively, [6,7] helping us 

gain insights into properties of solutions. Typical representatives of this approach include Euler's method, the 

Runge-Kutta method, and finite difference methods [6,7]. However, traditional numerical methods face a challenge 

in balancing precision and computational efficiency. E.g., improving precision often leads to reduced efficiency 

[6,7]. Moreover, high-order and nonlinear ODEs introduce stability issues [6,7]. 

To overcome these challenges, neural network methods have been introduced into the solving of ODEs 

[8-10,29]. The core idea is to use neural networks with a larger number of parameters as trial functions to 

approximate solutions, akin to the traditional Ritz method [6,7]. Neural network methods have two key 

improvements: first, the trial functions employ neural networks with more parameters, enhancing their 

approximation capabilities [8-10]. Second, they employ backpropagation methods to optimize the parameters 

within the trial functions, ensuring that they satisfy the constraints of the equations and boundary conditions [8-10].  

Compared to traditional numerical methods, neural network-based approaches undeniably provide 

substantial enhancements in both precision and efficiency. Nevertheless, there remains a new avenue of research 

dedicated to further augmenting the efficacy and expeditiousness of this method. Effectiveness entails the 
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development of robust neural network architectures to guarantee the discovery of equation solutions, while 

efficiency focuses on strategies to expedite the training process. 

 Regarding effectiveness, researchers have provided various neural network-based backbones to prove 

effectiveness [8-14]. Those backbones can be roughly grouped into two categories. 1) multilayer perceptron 

(MLP) neural network-based [8-10,26-28] and 2) polynomial-based methods [11-13,30-33,35], such as the 

Chebyshev [31] and Legendre [35] polynomials. 

 Regarding efficiency, one of the major advancements is the introduction of incorporating more prior 

information into neural networks to expedite equation solving efficiency. Notable approaches are the physics–

informed neural networks (PINN) [15-17], designed to combine neural networks and physical equations to address 

scientific and engineering problems. 

The Pade approximant, a representative rational fraction polynomial approximation function [18], 

intriguingly exhibits comparable function fitting capabilities to existing methods like polynomials. Notably, it 

outperforms these methods, particularly in terms of efficiency [18-20]. Motivated by this, the present paper employs 

an efficient approach based on rational fraction polynomials, known as the ratio net, for solving ODEs. This method 

has been previously introduced in [19,20]. We showcase the effectiveness and efficiency of the ratio net in solving 

ODEs through various illustrative examples, including those from [21–25] and new examples proposed in this study. 

Furthermore, we conducted a comparative analysis with polynomial-based methods [30-33] and MLP neural 

network-based methods [26–29], affirming the superior efficiency of the Ratio Net. 

To the best of our limited knowledge, the ratio net, which is essentially a kind of rational fraction 

polynomial approximation functions, is introduced as an alternative method to solving the ODEs for the 

first time and holds promise for advancing the efficiency and effectiveness of solving differential 

equations. 

The remainder of this paper is organized as follows: Sec. 2 introduces the proposed method and Sec. 

3 demonstrates its advantages by applying it to several illustrative examples. Finally, Sec. 4 discusses our 

findings and concludes this work. 

 

II. Method Description 
This section introduces the main methods employed, including the structure of the ratio net, the trial 

function under boundary conditions, the loss function, and the weight updating algorithm. 

 

2.1 The ratio net: a brief review 

The ratio net, introduced in our previous work [19], serves as a neural network backbone. It 

differentiates itself from traditional neural networks, which rely on nonlinear activation functions and 

kernel functions, by utilizing rational fraction polynomial approximation functions to address nonlinear 

difficulties. There were evidence supports its superior efficiency compared to conventional neural 

networks like MLP and RBF [19]. We will provide a concise overview of the ratio net in the following 

section. 

A neural network can effectively search the mode of the relation between the outputs and the inputs.  

In the ratio net, the relation between the outputs and the inputs is: 

  
     ( )  

(∑           
 
   )(∑           

   
   )   

(∑            
   

    )(∑            
   

    )  
  (   )  

where   and   are parameters,   ranges from   to the dimension of the input   and   from1 to the 

dimension of the output  .  As illustrated in Fig. (1). Here, to solve the ODEs, the input and output 

dimensions are set to  . 
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Figure 1. A diagram of Ratio neural networks. 

 

2.2 The trial function under the boundary condition 

The ODEs’ boundary condition imposes additional challenges beyond constructing the trial functions. 

Indeed, typically, researchers consider the boundary conditions as an additional constraint and transform it 

into an extra term in the loss function [8-10].  This strategy forces the model’s parameters to be trained 

to fit the target function shape and meet the boundary condition. However, the boundary condition may 

prevent the neural network from finding the target function. An alternative approach introduces a trial 

function by constructing a network that automatically satisfies the boundary conditions, such as a trial 

function is in the form [34] 

      ( )     ( ) ( )   ( )  (   )  

where  ( )  and  ( )  are designed to satisfy the boundary conditions, and    ( )  are designed to 

search the target function. In this section, the ratio net-based trial function takes the form as proposed in 

[34]. However,  ( ) a n d   ( ) are chosen as power and power sum series that can be obtained by solving 

equations determined by the boundary conditions (see code in github). That is, in our approach, the trial 

function, Eq. (2-2), can be obtained without any manual configuration. 

Specifically, considering ODEs in the interval       with boundary conditions  ( )( )     and 

 ( )( )    , here  ( )( ) and  ( )( ) are the  - t h  and  - t h  derivative at   and   respectively.    and 

   are real numbers representing the boundary values. The trial function suggested is in the form, 

      
     ( )        ( )(   )  (   )    ( )  (   )  

where    and    are the maximum order    of the derivative in the boundary condition at   and  , 

respectively,       ( ) is the ratio net of Eq. (2.1) with the input and output dimensions set to 1.  ( ) is a 

series of highest order  , with   the number of equations in the boundary conditions.  ( )  meets the 

boundary conditions and thus is decided by the boundary conditions automatically. For example, if the 

boundary conditions read  ( )( )    and  ( )( )   , then,     ,     , and  ( )  (      
     ) (   ). In the context of problems associated with initial conditions, this fundamental concept 

remains applicable. 

 

2.3 Other existing methods: a brief review 

To demonstrate our method’s efficiency in solving the ODEs, we compare it with existing methods. 

Without loss of generality, we consider two typical conventional neural networks, the Legendre 

polynomials-based, and the MLP-based methods. This section briefly reviews both these methods. 

The polynomial based methods: the Legendre polynomials. The Legendre polynomial is a typical 

class of orthogonal polynomials, with their linear combination up to order   can be used as an effective 

function approximant. The Legendre polynomials [35] are defined as   ( )   ,   ( )   ,  and for   ( ) 

with    :  

    ( )  
    

   
   ( )  

 

   
    ( )  (   )  
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where   ( ) is the Legendre polynomial of order  .  The trial function based on the Legendre polynomials 

is: 

         
     ( )           ( )(   )  (   )    ( )  (   )  

where 

         ( )  ∑   

 

   

  ( )  (   )  

with    the weight to be learned. 

The neural network-based methods: the MLP. The MLP is a classic neural network that comprises an 

input layer, several hidden layers, and an output layer. To obtain the next layer, a non-linear activation 

function is applied to the linear combination of the previous layer. For instance, a one-hidden layer MLP 

with its input and output layer dimensions set to 1 is given by: 

    ( )  ∑     (∑      

 

   

)

 

   

     (   )  

where   is the size of hidden layer and  ( ) is the activation function. Typically, the activation function 

can be  ( )  (      ) (      ),  ( )    (     ),  a n d  e t c . .  The trial function of MLP-based 

methods is: 

    
     ( )      ( )(   )  (   )    ( )  (   )  

To conclude, the following trial functions are considered in this work: 

       {

      ( )(   )  (   )    ( )

         ( )(   )  (   )    ( )

    ( )(   )  (   )    ( )

 (   )  

 

2.4 An illustration of the advantages of the ratio net 

It proved that rational fraction polynomials share the function-fitting capabilities of traditional 

polynomials while offering several advantages, such as a larger convergence radius [18] and higher 

efficiency [19,20]. In this section, we demonstrate the superior efficiency of the ratio net by visualizing the 

changes in the trial function as we adjust the parameters, as shown in Fig. 2. By modifying the weights, the 

trial function dynamically explores the target function within the functional space. In this demonstration, 

the weights undergo random changes of up to 10.0% with each step or adjustment. The results illustrate 

that the ratio net exhibits both sensitivity to parameter variations and a consistent response to these 

changes, providing insights into its efficiency when navigating the functional space.  



Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the .. 

www.ijceronline.com                                                Open Access Journal                                                   Page 74 

 
Figure 2. An illustration of the trial functions’ efficiency. There are 9 steps plotted with different colors. 

In each step, the parameters of the trial function randomly changed by 10%.  Panel a. The trial functions of 

the proposed ratio net. Panels b and c. The trial functions of the MLP and Legendre polynomial, 

respectively. It shows that the ratio net is more sensitive to the change of parameters. 

 

2.5 The loss function and the update of the weights 

The general form of differential equations with boundary conditions can be expressed as 

     ( )  ( )( )         ( )( )            (    )  

and 

     ( )  ( )( )         ( )( )           (    )  

where   is the order of the ODE and  ( ) gives the boundary condition. Since the trial function in Eq. (2-

3) meets the boundary conditions automatically, one only need to minimize the following loss function 

       [   t   l( ) 
  t   l

  
        

        

   
]  (    )  

by training the ratio net. I.e., the weights in the ratio net are trained to minimize the loss function Eq. (2-

12) through the gradient descent method: 

      
     

 
 (    )  

with   the parameters in the networks. The updating of the weight in the ratio net is implemented through 

TensorFlow [36]. Further details on the  lgo  thm’s implementation are presented in the illustrative 

examples and the code is given in github:https://github.com/zhiyiqin/The-Ratio-Net-solve-High-Order-

and-the-Non-Linear-Ordinary-Differential-Equations. 

 

III. Illustrative examples 
In this section, the ratio net is applied to various illustrative examples from [21–26]. The result is 

compared with that of current representative methods. It reveals that the ratio net affords a higher 

efficiency. 

3.1 Non-linear ordinary differential equations. 

Example 1. Considering the ODE 

  ( )   ( )   ( )   (   )  
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with boundary conditions  ( )    √     [
 

 
   (

√   

√   
)]  and  ( )    √     [√  

 

 
   (

√   

√   
)] , 

which has the exact solution ( )    √     [√  
 

 
   (

√   

√   
)]  Fig. 3 illustrates the results of the 

three neural networks, where the effectiveness is characterized by the fitting diagram and the relative error 

between the numerical and the analytical solutions. The solutions, along with its first and second 

derivatives, are both displayed. The decreasing trend of the loss function shows each method’s efficiency. 

Example 2. Considering the ODE 

   ( )  
  ( )     ( )

   
 (   )  

with boundary conditions ( )    and  ( )  
 

 
, which has the exact solution  ( )     (   ). Fig. 4 

depicts the corresponding results.  

Example 3. Considering the ODE 

    ( )    ( )  os( ) s   ( ) (   )  

with boundary conditions ( )  ,   ( )  , and  ( )  , which has the exact solution  ( )     ( ). Fig. 5 

depicts the corresponding results. 

 

 
Figure 3. Comparison of the results given by the three neural networks of example 1. The learning rates 

are all 0.01. 
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Figure 4. Comparison of the results given by the three neural networks of example 2. The learning rates 

are all 0.1. 

 

 
Figure 5. Comparison of the results given by the three neural networks of example 3. The learning rates 

are all 0.01. 

 

3.2 High-order ordinary differential equations. 

Example 4. Considering the ODE 

 ( )( )      (   )  

with boundary conditions  (- )  ,   (- )  ,   ( )  , and   ( )  , which has the exact solution  ( )  
    . Fig. 6 depicts the results. 

Example 5. Considering the ODE 
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 ( ) ( )    
  

    ( )
   (        )  

  

  (    ) 
 (   )  

with boundary conditions  ( )  ,   ( )  ,   ( )  , and   ( )  , which has the exact solution  ( )  
  (   ) . Fig. 7 depicts the results. 

Example 6. Considering the ODE 

 ( )( )  ( ) [(
 

 
)

 

  ]    (
 

 
 )  (   )  

with boundary conditions  (- )  ,   (  )  
 

 
,  ( )  , and   ( ) -

 

 
, which has exact solution 

 ( )  os (
 

 
  ). Fig. 8 depicts the results. 

Example 7. Considering the ODE  

  ( )( )    ( )         (   )  

with boundary conditions  ( )  ,   ( )  ,  ( )  , and   ( )  , 

which has the exact solution  ( )    . Fig. 9 illustrates the results. 

 

 
Figure 6. Comparison of the results given by the three neural networks of example 4. The learning rates 

are all 0.0001. 
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Figure 7. Comparison of the results given by the three neural networks of example 5. The learning rates 

are all 0.0001. 

 

 
Figure 8. Comparison of the results given by the three neural networks of example 6. The learning rates 

are all 0.0001. 



Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the .. 

www.ijceronline.com                                                Open Access Journal                                                   Page 79 

 
Figure 9. Comparison of the results given by the three neural networks of example 7. The learning rates 

are all 0.0001. 

 

3.3 Non-linear and high-order ordinary differential equations. 

Example 8. Considering the ODE 

 ( )( )       ( )  (   )  

with boundary conditions  ( )    ,    ( )    ,    ( )    ,   ( )   e , and    ( ) e , which has the exact 

solution  ( )    . Fig. 10 depicts the results. 

Example 9. Considering the ODE 

 ( )( )   ( )   ( )    ( ) ( )( )       (  )     ( )     ( )

       (  )  (   )
 

with boundary conditions  (  )      (  ) ,   (  )        (  ) ,     (  )         (  ) ,  ( )  
    ( ),   ( )        ( ), and    ( )         ( ), which has the exact solution  ( )      (  ). Fig. 11 

presents the results. 

 
Figure 10. Comparison of the results given by the three neural networks of example 8. The learning rates 

are all 0.01. 
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Figure 11. Comparison of the results given by the three neural networks of example 9. The learning rates 

are all 0.001. 

 

3.4 Linear ordinary differential equations. 

This section considers several linear ODEs. 

Example 10,    ( )    ( )        ( ) with boundary conditions  ( ) -    d  (
 

 
)  , which has the 

exact solution       ( )      ( ). 

Example 11,   ( )  
 

 
           ( ) with boundary conditions  ( )    and  ( )  

    ( )

    , which 

has the exact solution  ( )           ( ). 

Example 12,   ( )  (  
     

      )  ( )        
      

       with boundary conditions  ( )    and 

 ( )    
 

     , which has the exact solution  ( )         (      )     . 

Example 13,   ( )      ( ) ( )           ( )with boundary conditions  (- )      d  ( )   , 

which has the exact solution  ( )    . 

Example 14,    ( )     ( )    ( )         with boundary conditions  ( )    and  ( )    , 

which has the exact solution  ( )      . 

Example 15,    ( )    ( )       (  ) with boundary conditions  ( )     and   (
 

 
)   , which 

has the exact solution  ( )      ( )      ( )  
Example16,    ( )     ( )   ( )         with boundary conditions  ( )    and  ( )  

      , which has the exact solution  ( )               

Example17,    ( )  
 

 
  ( )   ( )   

 

 
         ( )  with boundary conditions  ( )    and 

 ( )     ( )   
 

 , which has the exact solution  ( )      ( )       

Example 18,   ( )   ( )      with boundary conditions  ( )      and  ( )    
 

 
, which has 

the exact solution  ( )  (   )       .   

Fig. 12 illustrates the results of examples 11-18. 
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Figure 12. The loss versus steps of example 10 to 18 ,the learning rates of each examples may be different, 

but for the same examples, the learning rates of different models are same. 

 

Table 1. The relative errors of examples 10–18 

Relative error Ratio MLP Legendre 

Example 10 3.119e−06    96e−      6 e−   

Example 11 1.592e−07      e− 6      e− 6 

Example 12 1.799e−02      e−     8  e−   

Example 13    9 e− 6     6e−   3.136e−07 

Example 14    66e−   4.515e−06 9    e−   

Example 15 5.041e−07 9 8 6e−   9 96 e−   

Example 16   96 e− 6 6 8  e− 6 2.391e−06 

Example 17 3.863e−06 8    e−      6 e− 6 

Example 18 8.191e−07   68 e−        e−   

 

Example 19,    ( )   ( )    with boundary conditions  ( )    and  ( )   , which has the exact 

solution ( )   (    ( )   )     ( )     ( )      ( )     

Example 20,    ( )  
 

 
  ( )    ( )   with boundary conditions  (     )    and  ( )  

   (√ )  √ , which has the exact solution  ( )      (√  ) √    

Example 21,   ( )  
    ( )

    ( )
 ( )  

 

    ( )
with boundary conditions  ( )  

 

   ( )
 and  ( )  

 

   ( )
,which 

has the exact solution  ( )  (   )     ( )  
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Example 22,    ( )  
 

      ( )  
     

(    ) 
 ( )  

   

(    ) 
 with boundary conditions  (  )  

 

(     ) 
, 

 ( )  
 

  , which has the exact solution  ( )  (    )     

Example 23,   ( )            with boundary conditions  ( )    and  ( )   , which has the 

exact solution  ( )            
Example 24,   ( )   ( )  with boundary conditions  ( )    and   ( )   , which has the exact 

solution  ( )      
Example 25,   ( )       ( )     (  )       (  ) with boundary conditions  ( )     and   ( )  

      ( )      (  )   , which has the exact solution  ( )        (  )      ( )    

Example 26,    ( )  
 

 
     ( )  

  

   with the boundary conditions  ( )    and  ( )  
  

 
, which 

has the exact solution  ( )                   
Fig. 13 presents the results of examples 19-26. 

 

 
Figure 13. The loss versus steps of example 19 to 26, the learning rates of each examples may be different, 

but for the same examples, the learning rates of different models are same. 

 

Table 2. The relative errors of examples 19–26 

Relative error Ratio MLP Legendre 

Example 19   6  e−     88 e−   2.376e−06 

Example 20 2.092e−07    98e−   6   9e− 6 

Example 21 4.484e−05     8e−       9e−   

Example 22   9 6e−   1.053e−05    9 e−   

Example 23      e−        e−   9.775e−06 

Example 24     8e−   1.264e−07 6  8 e− 6 

Example 25 5.541e−05      e−        e−   
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Example 26 2.730e−04      e−        e−   

 

IV. Conclusions and discussions 
This paper proposes an effective backbone, the ratio net, that can effectively and efficiently solve 

the ODEs, especially the high-order and non-linear ODEs. Extensive comparisons against existing 

solutions such as the polynomials-based and multilayer perceptron neural network-based methods prove 

that the ratio net has higher efficiency.  

The essence of numerical methods lies in harnessing the computational power of computers to 

sample and search for optimal solutions within potential spaces. Despite computers surpassing human 

capabilities in search, the search space corresponding to real-world problems grows exponentially, 

rendering brute force methods impractical. Therefore, enhancing the efficiency of computer algorithms 

holds paramount significance. 

To improve algorithm efficiency, a common approach involves acquiring prior information about 

the problem and integrating it into the algorithm. This method proves effective as it enables computers to 

concentrate their efforts on areas where potential optimal solutions may reside. However, another equally 

essential approach is to enhance the efficiency of the search algorithm itself, a strategy that should not be 

overlooked.  

This study highlights that, compared to other trial functions, ratio net exhibits greater sensitivity to 

parameter variations, enabling it to expedite the search for the target function within the function space. 

The value of this research lies in presenting a novel case, demonstrating the efficiency superiority of 

rational fraction approximation over traditional methods. The ratio net holds promise for advancing the 

efficiency and effectiveness of solving differential equations.  
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