
ISSN (e): 2250 – 3005 || Volume, 14 || Issue, 2|| Mar. - Apr. – 2024 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 70

Efficiently Solving High-Order and Nonlinear ODEs with

Rational Fraction Polynomial: the Ratio Net

Chenxin Qin
a,#

, Ruhao Liu
b,#

, Maocai Li
a,*

, Shengyuan Li
a
, Yi Liu

a
, and

Chichun Zhou
a,*

a

School of Engineering, Dali University, Dali, Yunnan, China, 671003
b

School of Information Engineering, Nancahng University, Nanchang, Jiangxi, China, 330000
#
 These authors contributed equivalently to this work.

*
Corresponding author

--- ----------

Date of Submission: 02-04-2024 Date of acceptance: 13-04-2024

--- ----------

I. Introduction
Ordinary and partial differential equations (ODEs and PDEs) serve as crucial mathematical tools for analyzing

and describing a wide range of problems in physics and engineering [1-3].

The methods for solving ordinary differential equations (ODEs) have evolved over time, transitioning

from analytical approaches to conventional numerical methods and eventually to neural network techniques.

Analytical methods such as the series [4, 5] and the constant transform [4] methods may fail in complicate

cases. Unlike traditional rigorous analytical methods, numerical methods primarily employed difference

techniques, such as converting ODEs into recursive equations, and can solve ODEs extensively, [6,7] helping us

gain insights into properties of solutions. Typical representatives of this approach include Euler's method, the

Runge-Kutta method, and finite difference methods [6,7]. However, traditional numerical methods face a challenge

in balancing precision and computational efficiency. E.g., improving precision often leads to reduced efficiency

[6,7]. Moreover, high-order and nonlinear ODEs introduce stability issues [6,7].

To overcome these challenges, neural network methods have been introduced into the solving of ODEs

[8-10,29]. The core idea is to use neural networks with a larger number of parameters as trial functions to

approximate solutions, akin to the traditional Ritz method [6,7]. Neural network methods have two key

improvements: first, the trial functions employ neural networks with more parameters, enhancing their

approximation capabilities [8-10]. Second, they employ backpropagation methods to optimize the parameters

within the trial functions, ensuring that they satisfy the constraints of the equations and boundary conditions [8-10].

Compared to traditional numerical methods, neural network-based approaches undeniably provide

substantial enhancements in both precision and efficiency. Nevertheless, there remains a new avenue of research

dedicated to further augmenting the efficacy and expeditiousness of this method. Effectiveness entails the

Abstract

Recent advances in solving ordinary differential equations (ODEs) with neural networks have

been remarkable. Neural networks excel at serving as trial functions and approximating

solutions within functional spaces, aided by gradient backpropagation algorithms. However,

challenges remain in solving complex ODEs, including high-order and nonlinear cases,

emphasizing the need for improved efficiency and effectiveness. Traditional methods have

typically relied on established knowledge integration to improve problem-solving efficiency.

In contrast, this study takes a different approach by introducing a new neural network

architecture for constructing trial functions, known as ratio net. This architecture draws

inspiration from rational fraction polynomial approximation functions, specifically the Pade

approximant. Through empirical trials, it demonstrated that the proposed method exhibits

higher efficiency compared to existing approaches, including polynomial-based and

multilayer perceptron (MLP) neural network-based methods. The ratio net holds promise for

advancing the efficiency and effectiveness of solving differential equations.

Keywords

High-order ordinary differential equation, Nonlinear ordinary differential equation, Neural

network, Ratio net, rational fraction polynomial

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 71

development of robust neural network architectures to guarantee the discovery of equation solutions, while

efficiency focuses on strategies to expedite the training process.

 Regarding effectiveness, researchers have provided various neural network-based backbones to prove

effectiveness [8-14]. Those backbones can be roughly grouped into two categories. 1) multilayer perceptron

(MLP) neural network-based [8-10,26-28] and 2) polynomial-based methods [11-13,30-33,35], such as the

Chebyshev [31] and Legendre [35] polynomials.

 Regarding efficiency, one of the major advancements is the introduction of incorporating more prior

information into neural networks to expedite equation solving efficiency. Notable approaches are the physics–

informed neural networks (PINN) [15-17], designed to combine neural networks and physical equations to address

scientific and engineering problems.

The Pade approximant, a representative rational fraction polynomial approximation function [18],

intriguingly exhibits comparable function fitting capabilities to existing methods like polynomials. Notably, it

outperforms these methods, particularly in terms of efficiency [18-20]. Motivated by this, the present paper employs

an efficient approach based on rational fraction polynomials, known as the ratio net, for solving ODEs. This method

has been previously introduced in [19,20]. We showcase the effectiveness and efficiency of the ratio net in solving

ODEs through various illustrative examples, including those from [21–25] and new examples proposed in this study.

Furthermore, we conducted a comparative analysis with polynomial-based methods [30-33] and MLP neural

network-based methods [26–29], affirming the superior efficiency of the Ratio Net.

To the best of our limited knowledge, the ratio net, which is essentially a kind of rational fraction

polynomial approximation functions, is introduced as an alternative method to solving the ODEs for the

first time and holds promise for advancing the efficiency and effectiveness of solving differential

equations.

The remainder of this paper is organized as follows: Sec. 2 introduces the proposed method and Sec.

3 demonstrates its advantages by applying it to several illustrative examples. Finally, Sec. 4 discusses our

findings and concludes this work.

II. Method Description
This section introduces the main methods employed, including the structure of the ratio net, the trial

function under boundary conditions, the loss function, and the weight updating algorithm.

2.1 The ratio net: a brief review

The ratio net, introduced in our previous work [19], serves as a neural network backbone. It

differentiates itself from traditional neural networks, which rely on nonlinear activation functions and

kernel functions, by utilizing rational fraction polynomial approximation functions to address nonlinear

difficulties. There were evidence supports its superior efficiency compared to conventional neural

networks like MLP and RBF [19]. We will provide a concise overview of the ratio net in the following

section.

A neural network can effectively search the mode of the relation between the outputs and the inputs.

In the ratio net, the relation between the outputs and the inputs is:

 ()

(∑

)(∑

)

(∑

)(∑

)
 ()

where and are parameters, ranges from to the dimension of the input and from1 to the

dimension of the output . As illustrated in Fig. (1). Here, to solve the ODEs, the input and output

dimensions are set to .

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 72

Figure 1. A diagram of Ratio neural networks.

2.2 The trial function under the boundary condition

The ODEs’ boundary condition imposes additional challenges beyond constructing the trial functions.

Indeed, typically, researchers consider the boundary conditions as an additional constraint and transform it

into an extra term in the loss function [8-10]. This strategy forces the model’s parameters to be trained

to fit the target function shape and meet the boundary condition. However, the boundary condition may

prevent the neural network from finding the target function. An alternative approach introduces a trial

function by constructing a network that automatically satisfies the boundary conditions, such as a trial

function is in the form [34]

 () () () () ()

where () and () are designed to satisfy the boundary conditions, and () are designed to

search the target function. In this section, the ratio net-based trial function takes the form as proposed in

[34]. However, () a n d () are chosen as power and power sum series that can be obtained by solving

equations determined by the boundary conditions (see code in github). That is, in our approach, the trial

function, Eq. (2-2), can be obtained without any manual configuration.

Specifically, considering ODEs in the interval with boundary conditions ()() and

 ()() , here ()() and ()() are the - t h and - t h derivative at and respectively. and

 are real numbers representing the boundary values. The trial function suggested is in the form,

 () ()() () () ()

where and are the maximum order of the derivative in the boundary condition at and ,

respectively, () is the ratio net of Eq. (2.1) with the input and output dimensions set to 1. () is a

series of highest order , with the number of equations in the boundary conditions. () meets the

boundary conditions and thus is decided by the boundary conditions automatically. For example, if the

boundary conditions read ()() and ()() , then, , , and () (
) (). In the context of problems associated with initial conditions, this fundamental concept

remains applicable.

2.3 Other existing methods: a brief review

To demonstrate our method’s efficiency in solving the ODEs, we compare it with existing methods.

Without loss of generality, we consider two typical conventional neural networks, the Legendre

polynomials-based, and the MLP-based methods. This section briefly reviews both these methods.

The polynomial based methods: the Legendre polynomials. The Legendre polynomial is a typical

class of orthogonal polynomials, with their linear combination up to order can be used as an effective

function approximant. The Legendre polynomials [35] are defined as () , () , and for ()

with :

 ()

 ()

 () ()

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 73

where () is the Legendre polynomial of order . The trial function based on the Legendre polynomials

is:

 () ()() () () ()

where

 () ∑

 () ()

with the weight to be learned.

The neural network-based methods: the MLP. The MLP is a classic neural network that comprises an

input layer, several hidden layers, and an output layer. To obtain the next layer, a non-linear activation

function is applied to the linear combination of the previous layer. For instance, a one-hidden layer MLP

with its input and output layer dimensions set to 1 is given by:

 () ∑ (∑

)

 ()

where is the size of hidden layer and () is the activation function. Typically, the activation function

can be () () (), () (), a n d e t c . . The trial function of MLP-based

methods is:

 () ()() () () ()

To conclude, the following trial functions are considered in this work:

 {

 ()() () ()

 ()() () ()

 ()() () ()

 ()

2.4 An illustration of the advantages of the ratio net

It proved that rational fraction polynomials share the function-fitting capabilities of traditional

polynomials while offering several advantages, such as a larger convergence radius [18] and higher

efficiency [19,20]. In this section, we demonstrate the superior efficiency of the ratio net by visualizing the

changes in the trial function as we adjust the parameters, as shown in Fig. 2. By modifying the weights, the

trial function dynamically explores the target function within the functional space. In this demonstration,

the weights undergo random changes of up to 10.0% with each step or adjustment. The results illustrate

that the ratio net exhibits both sensitivity to parameter variations and a consistent response to these

changes, providing insights into its efficiency when navigating the functional space.

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 74

Figure 2. An illustration of the trial functions’ efficiency. There are 9 steps plotted with different colors.

In each step, the parameters of the trial function randomly changed by 10%. Panel a. The trial functions of

the proposed ratio net. Panels b and c. The trial functions of the MLP and Legendre polynomial,

respectively. It shows that the ratio net is more sensitive to the change of parameters.

2.5 The loss function and the update of the weights

The general form of differential equations with boundary conditions can be expressed as

 () ()() ()() ()

and

 () ()() ()() ()

where is the order of the ODE and () gives the boundary condition. Since the trial function in Eq. (2-

3) meets the boundary conditions automatically, one only need to minimize the following loss function

 [t l()
 t l

] ()

by training the ratio net. I.e., the weights in the ratio net are trained to minimize the loss function Eq. (2-

12) through the gradient descent method:

 ()

with the parameters in the networks. The updating of the weight in the ratio net is implemented through

TensorFlow [36]. Further details on the lgo thm’s implementation are presented in the illustrative

examples and the code is given in github:https://github.com/zhiyiqin/The-Ratio-Net-solve-High-Order-

and-the-Non-Linear-Ordinary-Differential-Equations.

III. Illustrative examples
In this section, the ratio net is applied to various illustrative examples from [21–26]. The result is

compared with that of current representative methods. It reveals that the ratio net affords a higher

efficiency.

3.1 Non-linear ordinary differential equations.

Example 1. Considering the ODE

 () () () ()

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 75

with boundary conditions () √ [

 (

√

√
)] and () √ [√

 (

√

√
)] ,

which has the exact solution () √ [√

 (

√

√
)] Fig. 3 illustrates the results of the

three neural networks, where the effectiveness is characterized by the fitting diagram and the relative error

between the numerical and the analytical solutions. The solutions, along with its first and second

derivatives, are both displayed. The decreasing trend of the loss function shows each method’s efficiency.

Example 2. Considering the ODE

 ()
 () ()

 ()

with boundary conditions () and ()

, which has the exact solution () (). Fig. 4

depicts the corresponding results.

Example 3. Considering the ODE

 () () os() s () ()

with boundary conditions () , () , and () , which has the exact solution () (). Fig. 5

depicts the corresponding results.

Figure 3. Comparison of the results given by the three neural networks of example 1. The learning rates

are all 0.01.

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 76

Figure 4. Comparison of the results given by the three neural networks of example 2. The learning rates

are all 0.1.

Figure 5. Comparison of the results given by the three neural networks of example 3. The learning rates

are all 0.01.

3.2 High-order ordinary differential equations.

Example 4. Considering the ODE

 ()() ()

with boundary conditions (-) , (-) , () , and () , which has the exact solution ()
 . Fig. 6 depicts the results.

Example 5. Considering the ODE

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 77

 () ()

 ()
 ()

 ()
 ()

with boundary conditions () , () , () , and () , which has the exact solution ()
 () . Fig. 7 depicts the results.

Example 6. Considering the ODE

 ()() () [(

)

] (

) ()

with boundary conditions (-) , ()

, () , and () -

, which has exact solution

 () os (

). Fig. 8 depicts the results.

Example 7. Considering the ODE

 ()() () ()

with boundary conditions () , () , () , and () ,

which has the exact solution () . Fig. 9 illustrates the results.

Figure 6. Comparison of the results given by the three neural networks of example 4. The learning rates

are all 0.0001.

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 78

Figure 7. Comparison of the results given by the three neural networks of example 5. The learning rates

are all 0.0001.

Figure 8. Comparison of the results given by the three neural networks of example 6. The learning rates

are all 0.0001.

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 79

Figure 9. Comparison of the results given by the three neural networks of example 7. The learning rates

are all 0.0001.

3.3 Non-linear and high-order ordinary differential equations.

Example 8. Considering the ODE

 ()() () ()

with boundary conditions () , () , () , () e , and () e , which has the exact

solution () . Fig. 10 depicts the results.

Example 9. Considering the ODE

 ()() () () () ()() () () ()

 () ()

with boundary conditions () () , () () , () () , ()
 (), () (), and () (), which has the exact solution () (). Fig. 11

presents the results.

Figure 10. Comparison of the results given by the three neural networks of example 8. The learning rates

are all 0.01.

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 80

Figure 11. Comparison of the results given by the three neural networks of example 9. The learning rates

are all 0.001.

3.4 Linear ordinary differential equations.

This section considers several linear ODEs.

Example 10, () () () with boundary conditions () - d (

) , which has the

exact solution () ().

Example 11, ()

 () with boundary conditions () and ()

 ()

 , which

has the exact solution () ().

Example 12, () (

) ()

 with boundary conditions () and

 ()

 , which has the exact solution () () .

Example 13, () () () ()with boundary conditions (-) d () ,

which has the exact solution () .

Example 14, () () () with boundary conditions () and () ,

which has the exact solution () .

Example 15, () () () with boundary conditions () and (

) , which

has the exact solution () () ()
Example16, () () () with boundary conditions () and ()

 , which has the exact solution ()

Example17, ()

 () ()

 () with boundary conditions () and

 () ()

 , which has the exact solution () ()

Example 18, () () with boundary conditions () and ()

, which has

the exact solution () () .

Fig. 12 illustrates the results of examples 11-18.

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 81

Figure 12. The loss versus steps of example 10 to 18 ,the learning rates of each examples may be different,

but for the same examples, the learning rates of different models are same.

Table 1. The relative errors of examples 10–18

Relative error Ratio MLP Legendre

Example 10 3.119e−06 96e− 6 e−

Example 11 1.592e−07 e− 6 e− 6

Example 12 1.799e−02 e− 8 e−

Example 13 9 e− 6 6e− 3.136e−07

Example 14 66e− 4.515e−06 9 e−

Example 15 5.041e−07 9 8 6e− 9 96 e−

Example 16 96 e− 6 6 8 e− 6 2.391e−06

Example 17 3.863e−06 8 e− 6 e− 6

Example 18 8.191e−07 68 e− e−

Example 19, () () with boundary conditions () and () , which has the exact

solution () (()) () () ()

Example 20, ()

 () () with boundary conditions () and ()

 (√) √ , which has the exact solution () (√) √

Example 21, ()
 ()

 ()
 ()

 ()
with boundary conditions ()

 ()
 and ()

 ()
,which

has the exact solution () () ()

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 82

Example 22, ()

 ()

()
 ()

()
 with boundary conditions ()

()
,

 ()

 , which has the exact solution () ()

Example 23, () with boundary conditions () and () , which has the

exact solution ()
Example 24, () () with boundary conditions () and () , which has the exact

solution ()
Example 25, () () () () with boundary conditions () and ()

 () () , which has the exact solution () () ()

Example 26, ()

 ()

 with the boundary conditions () and ()

, which

has the exact solution ()
Fig. 13 presents the results of examples 19-26.

Figure 13. The loss versus steps of example 19 to 26, the learning rates of each examples may be different,

but for the same examples, the learning rates of different models are same.

Table 2. The relative errors of examples 19–26

Relative error Ratio MLP Legendre

Example 19 6 e− 88 e− 2.376e−06

Example 20 2.092e−07 98e− 6 9e− 6

Example 21 4.484e−05 8e− 9e−

Example 22 9 6e− 1.053e−05 9 e−

Example 23 e− e− 9.775e−06

Example 24 8e− 1.264e−07 6 8 e− 6

Example 25 5.541e−05 e− e−

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 83

Example 26 2.730e−04 e− e−

IV. Conclusions and discussions
This paper proposes an effective backbone, the ratio net, that can effectively and efficiently solve

the ODEs, especially the high-order and non-linear ODEs. Extensive comparisons against existing

solutions such as the polynomials-based and multilayer perceptron neural network-based methods prove

that the ratio net has higher efficiency.

The essence of numerical methods lies in harnessing the computational power of computers to

sample and search for optimal solutions within potential spaces. Despite computers surpassing human

capabilities in search, the search space corresponding to real-world problems grows exponentially,

rendering brute force methods impractical. Therefore, enhancing the efficiency of computer algorithms

holds paramount significance.

To improve algorithm efficiency, a common approach involves acquiring prior information about

the problem and integrating it into the algorithm. This method proves effective as it enables computers to

concentrate their efforts on areas where potential optimal solutions may reside. However, another equally

essential approach is to enhance the efficiency of the search algorithm itself, a strategy that should not be

overlooked.

This study highlights that, compared to other trial functions, ratio net exhibits greater sensitivity to

parameter variations, enabling it to expedite the search for the target function within the function space.

The value of this research lies in presenting a novel case, demonstrating the efficiency superiority of

rational fraction approximation over traditional methods. The ratio net holds promise for advancing the

efficiency and effectiveness of solving differential equations.

V. Declarations
5.1 Ethical Approval

Not Applicable

5.2 Availability of supporting data

Source code for the algorism is available at GitHub: https://github.com/zhiyiqin/The-Ratio-Net-solve-

High-Order-and-the-Non-Linear-Ordinary-Differential-Equations.

5.3 Competing interests

The authors declare that they have no competing interests regarding the publication of this manuscript.

5.4 Funding

This work is supported by the National Natural Science Funds of China (Grant No. 62106033), Yunnan

Youth Fundamental Research Projects (202001AU070020) and Doctoral Programs of Dali University

(KYBS201910).

5.5 Authors’ contributions

Zhou, C.C.: Conceptualized and implemented the algorithm, analyzed the results, reviewed, and revised

the manuscript. Qin, C.X. and Liu, R.H.: Implemented and developed the algorithm, carried out the

experiments. Qin, C.X., Li, M.C., and Liu, R.H.: Wrote the original draft. Li, S.Y. and Zhou, C.C.:

Analyzed the results. Zhou, C.C., Li, M.C., Li, S.Y., and Liu, Y.: Reviewed and revised the manuscript.

5.6 Acknowledgments

We are very indebted to Prof. Wu-Sheng Dai for his enlightenment and encouragement. We are very

indebted to Profs. Guan-Wen Fang and Yong Xie for their encouragement.

References
[1]. Ellahi, R., Fetecau, C., & Sheikholeslami, M. (2018). Recent advances in the application of differential equations in mechanical

engineering problems. Mathematical Problems in Engineering, 2018.

[2]. Antontsev, S. N., Díaz, J. I., Shmarev, S., & Kassab, A. J. (2002). Energy Methods for Free Boundary Problems: Applications to
Nonlinear PDEs and Fluid Mechanics. Progress in Nonlinear Differential Equations and Their Applications, Vol 48. Appl. Mech.

Rev., 55(4), B74-B75.

[3]. Betounes, D. (2010). Differential Equations: theory and applications (pp. 201-207). New York: Springer.
[4]. Zaitsev, V. F., & Polyanin, A. D. (2002). Handbook of exact solutions for ordinary differential equations. CRC press.

[5]. Corliss, G., & Chang, Y. F. (1982). Solving ordinary differential equations using Taylor series. ACM Transactions on Mathematical
Software (TOMS), 8(2), 114-144.

[6]. Butcher, J. C. (2016). Numerical methods for ordinary differential equations. John Wiley & Sons.

[7]. Quarteroni, A., & Valli, A. (2008). Numerical approximation of partial differential equations (Vol. 23). Springer Science &
Business Media.

[8]. Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential equations.

IEEE transactions on neural networks, 9(5), 987-1000.
[9]. Schneidereit, T., & Breuß, M. (2020). Solving ordinary differential equations using artificial neural networks-a study on the solution

variance. In Proceedings of the conference algoritmy (pp. 21-30).

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the ..

www.ijceronline.com Open Access Journal Page 84

[10]. Qiu, C., Bendickson, A., Kalyanapu, J., & Yan, J. (2023). Accuracy and Architecture Studies of Residual Neural Network Method

for Ordinary Differential Equations. Journal of Scientific Computing, 95(2), 50.
[11]. Vinodbhai, C. D., & Dubey, S. (2023). Numerical solution of neutral delay differential equations using orthogonal neural network.

Scientific Reports, 13(1), 3164.

[12]. Omidi, M., Arab, B., Rasanan, A. H., Rad, J. A., & Parand, K. (2021). Learning nonlinear dynamics with behavior
ordinary/partial/system of the differential equations: looking through the lens of orthogonal neural networks. Engineering with

Computers, 1-20.

[13]. Mall, S., & Chakraverty, S. (2016). Application of Legendre neural network for solving ordinary differential equations. Applied
Soft Computing, 43, 347-356.

[14]. Qiu, C., Bendickson, A., Kalyanapu, J., & Yan, J. (2023). Accuracy and Architecture Studies of Residual Neural Network Method

for Ordinary Differential Equations. Journal of Scientific Computing, 95(2), 50.
[15]. Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., & Piccialli, F. (2022). Scientific machine learning through

physics–informed neural networks: Where we are and wh t’s next. Journal of Scientific Computing, 92(3), 88.

[16]. Cai, S., Mao, Z., Wang, Z., Yin, M., & Karniadakis, G. E. (2021). Physics-informed neural networks (PINNs) for fluid mechanics:
A review. Acta Mechanica Sinica, 37(12), 1727-1738.

[17]. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378, 686-707.
[18]. Liu, C., Li, W. D., & Dai, W. S. (2023). Perturbation-based Non-perturbative Method. arXiv preprint arXiv:2308.10996.

[19]. Zhou, C.C., Tu, H.L., Liu, Y., and Hu, J.(2022). Activation functions are not needed: the ratio net. Deep Learning, 1(1), 8-

16. arXiv:2005.06678.
[20]. Zhou, C.C., and Liu, Y.. (2022). The pade approximant based network for variational problems. Deep Learning, 1(1), 1-7.

arXiv:2004.00711.

[21]. Yang, Y., Hou, M., & Luo, J. (2018). A novel improved extreme learning machine algorithm in solving ordinary differential
equations by Legendre neural network methods. Advances in Difference Equations, 2018(1), 1-24.

[22]. Parapari, H. F., & Menhaj, M. B. (2016, January). Solving nonlinear ordinary differential equations using neural networks. In 2016

4th International Conference on Control, Instrumentation, and Automation (ICCIA) (pp. 351-355). IEEE.
[23]. Ezadi, S., & Parandin, N. (2013). An application of neural networks to solve ordinary differential equations. International Journal of

Mathematical Modelling & Computations Vol. 03, (03), 245- 252

[24]. Ramadan, M. A., Raslan, K. R., El Danaf, T. S., & Abd El Salam, M. A. (2017). An exponential Chebyshev second kind
approximation for solving high-order ordinary differential equations in unbounded domains, with application to Dawson's integral.

Journal of the Egyptian Mathematical Society, 25(2), 197-205.

[25]. Akyüz-D ş ıoğlu A., & Çerdi, H. (2011). The solution of high-order nonlinear ordinary differential equations by Chebyshev series.
Applied Mathematics and Computation, 217(12), 5658-5666.

[26]. Kumar, M., & Yadav, N. (2011). Multilayer perceptrons and radial basis function neural network methods for the solution of

differential equations: a survey. Computers & Mathematics with Applications, 62(10), 3796-3811.
[27]. Alli, H., Uçar, A., & Demir, Y. (2003). The solutions of vibration control problems using artificial neural networks. Journal of the

Franklin Institute, 340(5), 307-325.
[28]. Shirvany, Y., Hayati, M., & Moradian, R. (2009). Multilayer perceptron neural networks with novel unsupervised training method

for numerical solution of the partial differential equations. Applied Soft Computing, 9(1), 20-29.

[29]. Gupta, J., Jayaprakash, B., Eagon, M., Selvam, H. P., Molnar, C., Northrop, W., & Shekhar, S. (2023). A Survey on Solving and
Discovering Differential Equations Using Deep Neural Networks. arXiv preprint arXiv:2304.13807.

[30]. Mall, S., & Chakraverty, S. (2017). Single layer Chebyshev neural network model for solving elliptic partial differential equations.

Neural Processing Letters, 45, 825-840.
[31]. Mall, S., & Chakraverty, S. (2014). Chebyshev neural network based model for solving Lane–Emden type equations. Applied

Mathematics and Computation, 247, 100-114.

[32]. Chakraverty, S., & Mall, S. (2020). Single layer Chebyshev neural network model with regression-based weights for solving
nonlinear ordinary differential equations. Evolutionary Intelligence, 13, 687-694.

[33]. Patra, J. C., Juhola, M., & Meher, P. K. (2008). Intelligent sensors using computationally efficient Chebyshev neural networks. IET

Science, Measurement & Technology, 2(2), 68-75.
[34]. Malek, A., & Beidokhti, R. S. (2006). Numerical solution for high order differential equations using a hybrid neural network—

optimization method. Applied Mathematics and Computation, 183(1), 260-271.

[35]. Dattoli, G., Ricci, P. E., & Cesarano, C. (2001). A note on Legendre polynomials. International Journal of Nonlinear Sciences and
Numerical Simulation, 2(4), 365-370.

[36]. Pang, B., Nijkamp, E., & Wu, Y. N. (2020). Deep learning with tensorflow: A review. Journal of Educational and Behavioral

Statistics, 45(2), 227-248.

