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I. INTRODUCTION 
The elastohydrodynamic lubrication theory concerns with lubricated film thickness, pressure and 

elastic deformation of contacting surfaces between non-conformal solid surfaces which comes into contact in 

presence of lubricants. The elastic deformations of surfaces due to pressure generation in the contact zone which 

is so high are considered and determined the pressure and lubricant film thickness distributions. These contacts 

arise in mechanical components such as rollers, gears, bearings, cams etc. due to high pressure generated within 

the contact zone.  Grubin and Vinogradova[1], Dowson and Higginson [2, 3] were pioneers to obtain the 

numerical solution of EHL problems for Newtonian fluids. Many research investigators have used various 

numerical methods for considering loads from low to moderate and sliding speeds are obtained, for both film 

thicknesses and pressure distributions in the case of Newtonian fluids. However, at high load and strain, a large 

discrepancy arises between experimental and numerical results in case of Newtonian fluid models. To overcome 

these discrepancies a various non-Newtonian rheological models are available in literature and which are 

different from Newtonian viscosity law. 

The influence of lubricant rheological fluid model was first considered by Bell [4] on film thickness 

and derived a generalized Reynolds equation for non-Newtonian fluid of Eyring [5] model over pure rolling 

conditions. The analytical approximations were used to obtain an Ertel-type solution; it predicts that non-

Newtonian behavior on film thickness for pure rolling conditions is remarkably influenced. Also, the 
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experimental data were based on Ertel theory and analytical results for various characteristic behaviors of non-

Newtonian fluids. An isothermal EHD line contact with a Ree-Eyring lubricant with pure rolling conditions was 

analyzed by Kodnir et al. [6]. The author obtained numerical solution of EHD problem initiated with Bell’s 

Reynolds equation and depict the pressure profiles in the form of semi-elliptical with cut-off shape in the outlet 

region.  

The power-law model was introduced by Dyson and Wilson [7] and predicted that shear stress, shear 

stain profiles decreases in the slope as shear rate increases. The loss of viscosity in shear thinning process was 

obtained by Hirst and Moore [8] using Eyring’s equation [9] and Ree and Eyring [5]. Johnson and Tevaarwerk 

[10] introduced a nonlinear Maxwell rheological model for lubricant under isothermal conditions, where the 

total shear strain rate is the sum of an elastic term and nonlinear viscous term is based on Eyring’s theory of 

viscosity. Bair and Winer [11] determined Maxwell rheological model and correlated with experiment results. 

This model further utilized to determine Ertel-type solutions of EHD problems by Gecim and Winer[12]. The 

simplified limiting shear stress model was employed to obtain numerical solution of EHD by Jacobson and 

Hamrock [13]. The results shows that, a reduction in film thickness on Newtonian model when sliding cases 

were involved. Based on Eyring theory of non-Newtonian, Conry et al. [14] derived a new Reynolds equation of 

one dimensional flow and numerically analyzed EHL line contact problem. The numerical investigation shows 

that, the reduction of film thickness under combined rolling/sliding conditions due to non-Newtonian effect. 

The thermal effect in the solution of EHL line contact problems was presented by Sternlicht et al. [15]. 

Cheng and Sternlicht [16] analyzed thermal line contact EHL problem by Newton-Raphson method and 

assuming the constant viscosity across the lubricant fluid film. Murch and Wilson [17] illustrated the variation 

in minimum film thickness at the inlet flow due to significant influence of thermal effects with high rolling 

speeds. Ghosh and Hamrock [18] proposed a new minimum film thickness formula for Newtonian lubricant. 

Sadeghi and Sui [19] discussed the thermal effects in EHL under pure rolling/sliding contacts by Newton-

Raphson method and predicted substantial variations in minimum film thickness. Hsu and Lee [20] proposed a 

new algorithm of line contact EHL problem under pure sliding /rolling with thermal effects. Lee et al. [21] 

considered the numerical solution of circular contact EHL under rolling /sliding with thermal effects using 

multilevel and multi-integration method. Many researchers like Salehizadeh and Saka [22], Wolff et al. [23], 

Wolff and Kubo [24], Yang and Wen [25], Awati et al. [26] have contributed the line/point/circular contact EHL 

problems with thermal effects. 

In most of the research papers, Newton-Raphson method is used to obtain the solution of EHL 

problems. In this method, the computational complexity increases due to increase in the size of Jacobian matrix. 

To overcome the complexity, multigrid method (Lubricant et al.[27], Venner[28]) was introduced in order to 

reduce the computational complexity of the method from  3nO to   nnO log . In order to enhance the 

efficiency in computation of EHL problem multigrid method is used. In this case, calculation domain was 

divided into two parts, where Gauss-Siedal and Jacobi-dipole relaxation methods are applied in the low pressure 

contact region and high pressure contact regions respectively. In view of Newton-GMRES method, the solutions 

are obtained using Krylov subspace of a finite dimensions (Saad[29]). The partition of a domain and inversion 

of Jacobian matrix is not required in this method. Chen [30] demonstrated the method of preconditioning the 

sparse dense matrix.  Ford et al.[31] used restarted Newton-GMRES method with Daubechies D4 [32] discrete 

wavelet with permutation as pre-conditioner to solve isothermal EHL line contact problem. The authors depict 

that preconditioned matrix with banded matrix; the computational complexity is reduced further and mainly 

focused on computational cost in terms of time and number of iterations. Awati and Kumar [33] extended this 

method for the analysis of EHL line contact with piezo-viscous fluid. Awati et al [34] scrutinized the effect of 

electric double layer and surface roughness on EHL problem. 

In the present study, numerical investigation of non-Newtonian thermal EHL line contact with Ree-

Eyring model comprising modified Reynolds, film thickness, load balance and energy equations using restarted 

preconditioned Newton-GMRES method consisting of D6 Daubechies wavelet. The numerical results are 

obtained by varying load and speed which are presented in terms of graphs. Also, the computed results and 

calculation time are compared with previously published results. 

 

II. RHEOLOGICAL MODEL  
The EHL problems in reality, the characteristic behavior for most of the fluid exhibit non-Newtonian in 

nature. To overcome these difficulties several models were presented in literature, among all those models 

Eyring model is defined as 
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Johnson and Tevaarwerk [10] considered a nonlinear viscous model for predicting traction and 

determine the effect of non-Newtonian behavior on pressure, film thickness profiles based on Ree-Eyring 

model. The modified Reynolds equation according to Conry et al. [14] becomes 
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The term ( )ES x in Eq. (2) represents the non-Newtonian effect and is given by 
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 and the mean shear stress becomes 
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As 0 , it leads to tends to zero and   1xSE , it shows that Eyring model leads to Newtonian fluid 

model. The numerical value of ( )ES x  is greater than or equal to unity for all values of  and
m . In case of 

pure rolling, 
0cosh( / )m  tends to one. 

 

III. GOVERNING EQUATIONS 
The one-dimensional modified Reynolds-Ree-Eyring equation in dimensionless form becomes 
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The cavitations condition with respect to governing physical problem becomes 
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The Dowson-Higginson [3] density-pressure relation is given as 
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The Roelands viscosity-pressure relation is read as 
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where
0  is the absolute viscosity,

0

h
H

p
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p
 is maximum Hertizan pressure, 8

0 1.98x10  [Pa]p  and z is 

a pressure-viscosity index characteristic constant of the fluid. The film thickness equation can be written in 

dimensionless form as  
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The dimensionless load balance equation becomes 
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The non-dimensional energy equation with lubricant properties such as specific heat, thermal conductivity and 

thermal expansivity are constants with respect to pressure or temperature (Yang and Wen [25]), and it can be 

written as

 
 

2
2

*

2 cv ac vd

T T T P U
N U N U N

X X ZZ
 



       
                

        (11) 



Numerical solution of thermal non-Newtonian EHL line contact problem by using .. 

www.ijceronline.com                                              Open Access Journal                                                     Page 52 
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The dimensionless boundary conditions for the energy equation becomes   
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Where ba TT  and  are respectively denotes the lower and upper surface temperatures of solids. The surfaces 

temperatures for solid a  and solid b  respectively becomes 
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IV. DISCRETIZATION OF GOVERNING EQUATIONS 
The finite difference approximations are used to discretize the Eqns. (5), (6) and (9), with grid size N. 

The computation domain is [X ,  X ] [ 4,  1.5]in out    and cavitation point cX is calculated during the solution 

process by taking negative pressure value is equal to zero. The dimensionless Reynolds equation and cavitation 

conditions are discretized as 
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The discretized form of film thickness equation becomes 
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for 1,...,2,1  Ni  and  .1,...,2,1  Nj The load balance equation in discretized form as  
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The discretized form of energy equation can be written as 
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The pressure and temperature convergence criteria is 
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where 1 21 - 4 and 1 4E E    are error tolerance.  
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V. NUMERICAL SOLUTION 
 

Newton-GMRES method: The system of linear algebraic equations can be written as 

Ax b ,              (20) 

where A is a non-symmetric dense matrix and is solved by Krylov subspace iterative methods such as  

Generalized minimum residual(GMRES) method. In general, the convergence of GMRES method for nonlinear 

problems is very slow due to increase in the grid size n leads to increase in the condition number of A. Thus, we 

require an efficient method; first, the coefficient matrix A should be preconditioned. This pre-conditioner matrix

A converges much faster when GMRES method is used and solution is obtained for any vector. A sparse matrix

P constructed by using discrete wavelet transform and used as right pre-conditioner which approximates matrix 

A in Eqn. (19). After right preconditioning of Eqn. (19) may be written as 

 
1 ,         where AP y b y Px   . 

If matrix P  is a good approximation to matrix A ,then it converges for less number of iterations with required 

error tolerance. To approximate a full matrix A , consider a standard Discrete wavelet transform (DWT) 

comprising D6 or D4 wavelets, the discrete D4 or D6 wavelet transformation with permutations as proposed by 

Chen[30]. In this article all the results are calculated by using Daubechies D6 wavelets[34]. 
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 The transformation matrix W  with Daubechies’ order 6m   wavelets with / 2 3m   vanishing 

moments is written as  

0 1 2 3 4 5
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where coefficients ,i ic d
 

are known to be  ,45987.0 ,80689.0 ,33267.0 210  ccc

03522.0 ,08544.0 ,13501.0 543  ccc  and 
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Discrete wavelet transform with permutation (DWTPer) 

For a given matrix A , DWTPer is 
T ,A WAW where W PW and permutation matrix 

T T T T

1 2 1...L L r rP P P P P   . A simple pre-conditioner is used for such a matrix, which would be a banded matrix 

constructed by setting to zero, all entries of the matrix outside a chosen diagonal band. The band matrices makes 

a particular good pre-conditioner as these may be stored efficiently and there are some routines available for 

manipulating them at low cost. When DWT with D6 are applied to sparse and dense matrix the nonzero 

elements increases as compared to DWT with D4 coefficients. Thus, the numerical accuracy of solutions is 

enhanced and also the convergence may be improved whenever number iterations increases.  

  

VI. METHOD OF SOLUTION 
The mode of solution procedure for the present problem is outlined in the following steps  

1. Start with initial pressure as Hertz pressure and film thickness 0h . 

2. Jacobian matrix for Eqn. (11) is obtained by using Newton’s method. 

3. Apply restarted GMRES method with preconditioner as described in section 5.2 to get new pressure 

value.  

4. Set the value of pressure to zero for all pressure values less than zero.  

5. 0h is updated by balancing Eqn. (14). 

6. If the required error tolerance is reached stop the iteration process, otherwise continue with step 2. 

7. The obtained pressure and film thickness in step 6 are utilized for solving energy equation with error 

tolerance and again from step 2 the above process is repeated until the obtained temperature till 

converges for both pressure and temperature. 

 

VII. RESULT AND DISCUSSION 
 

The study of thermal EHL line contact with eyring model comprises of pressure, film thickness and 

non-Newtonian fluid characteristic is numerically analyzed in detail. The solution procedure includes Newton 

method in the outer loop and restarted GMRES method of Krylov subspace is in the inner loop.  The restarted 

GMRES are restricted to 20 iterations in the computation. The discrete wavelet transformation (DWT) with 

Daubechies D6 wavelet coefficients are used in the computation of the problem. The DWT with D6 coefficients 

with permutation is applied to Jacobian matrix, i.e. 
TA WAW , which results into the pattern as shown in 

Figs. 1-2 for 513  and 257n . It is observed that, in this pattern the most of the non-zero elements are suited 

in the diagonal band compared to DWT with Daubechies D4 wavelet coefficients are used by Ford et al. [31] for 

the solution of EHL problems. Also, DWT with D6 wavelet coefficients without permutation is applied on 



Numerical solution of thermal non-Newtonian EHL line contact problem by using .. 

www.ijceronline.com                                              Open Access Journal                                                     Page 55 

Jacobian matrix to obtain
TA WAW which results into a finger like pattern is observed and are presented in 

Figs. 3 and 4 for 513  ,257n  after thresholding with error tolerance 1E-4. Figs. 5 and 6 represent the pattern 

of Jacobian matrix at the position of convergent solution. The main advantages of DWT with D6 wavelet 

coefficients together with permutation requires less number iterations in the inner loop as compared to D4 

coefficients DWT with permutation, i.e computational cost in terms of time taken to achieve a reasonable 

accuracy of the solution requires lesser time. Table 1 presents the comparison of CPU time in seconds with 

Newton-Raphson method, DWTPer with D4 wavelets and DWTPer with D6 wavelets for low, medium and high 

loads respectively over different grid size N. It is observed that, the computation time required for D6 DWTPer 

is less as compared to other numerical methods to obtain the required error tolerance.  Also, for a particular grid 

size N it is observed that, the computational time for CPU is almost same for different loads in the calculation 

domain for constant speed L=10.  

 
Figure 1. Permutation DWT with D6 wavelets for 

n=256 

 
Figure 3. DWT with D6 wavelets for n=256 

 
Figure 2. Permutation DWT with D6 wavelets for 

n=513 

 
Figure 4. DWT with D6 wavelets for n=513 

 
Figure 5. Permutation DWT with D6 wavelets at 

convergence for n=513 

 
Figure 6. DWT with D6 wavelets at convergence for 

n=513 
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Fig.1 Distribution pressure profiles for various values of M at L=11

 

 
Figure 7.Distribution of pressure and film thickness 

profiles forEyring fluid at various values of M at L=11.  
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Fig  Distribution of film thickness profiles for various values of M at L=11

 

 

 
Figure 8. Distribution of pressure and film thickness 

profiles for Eyring fluid at various values of M at L=11. 

 
Figure 10. Isothermal Pressure and film thickness 

profiles for Eyring fluid at M=100 and L=10 

 
Figure 9. Isothermal Pressure and film thickness 

profiles for Eyring fluid at M=40 and L=10 
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Figure 11. Isothermal sigma profiles for various values 

of M at L=11. 

 

 

 

 

 

 

 

 

 

 
Figure 12. Pressure profiles for M=40 and L=10 

 
Figure 13. Film thickness profiles for M=40 and L=10 
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Figure 14. Pressure and film thickness profiles for 

Eyring fluid at us=2m/s and w=1e6. 
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Figure 15. Pressure and film thickness profiles for 

Eyring fluid at us=3m/s and w=1e6. 
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Figure 16. Pressure and film thickness profiles for 

Eyring fluid at us=2m/s and w=5e5. 
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Figure 17.Temperature profiles for Eyring fluid at 

us=2m/s and w=1e6. 
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Figure 18.Temperature profiles for Eyring fluid at 

us=3m/s and w=1e6. 

 
Figure 19.   Shear stress profile at M=10 and L=10. 

 
Figure 20.   Shear stress profile at M=20 and L=10. 
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Figure 21.   Shear stress profile at M=20 and L=20. 

 
Figure 22.   Shear stress profile at M=20 and L=30. 
 

 Figs. 7 to 8 determines the pressure and film thickness distributions for different loads M=10, 40, 60, 

80 and 100 respectively, at constant speed L=10.  It predicts that, increase in M, pressure spike decreases and 

minimum film thickness also decreases. Figs. 9 and 10 present the isothermal pressure and film thickness 

profiles for low and high loads at constant speed. Fig. 11 shows the Eyring non-Newtonian characteristics of 

sigma and in the inlet region for backward flow   is slightly increases and decreases, and then there is 

sudden drop in the   profiles as pressure profiles increase in the spike region. Also, the sigma  drop 

value decreases with increase in the value of load. Figs. 12 and 13 shows the difference between isothermal 

Newtonian and non-Newtonian fluids for pressure and film thickness profiles at M=40 and L=10. It is 

concluded that, the Newtonian fluid have minimum film thickness as compared to non-Newtonian fluid. Also 

the height of pressure spike and occurring position decreases for non-Newtonian Eyring fluids as compared with 

pressure profiles for Newtonian fluids. Figs. 14 to 16 predicts the profiles of isothermal and thermal pressure, 

film thickness for us=2, 3 and w=1E6, 5E5 respectively. It shows that, the height of pressure spike increases for 

thermal case, the minimum and central film thickness decreases as compared to isothermal cases. Figs. 17 and 

18 determines the temperature profiles consisting of lower, upper and mid layer of lubricants denoted as Ta, Tb 

and Tmid. It shows that, the temperature at middle layer decreases with increasing speed and increases with 

increase in the loads. Also, the same features are observed in surface temperature. The temperature in middle of 

the lubricant has higher temperature as compared to boundary layer due to intermolecular forces which results 

into changes in the viscosity. Also, it is noticed that, temperature profiles increases maximum at the center of the 

contact region and second maximum is observed near the pressure spike region. 

 Figs. 19 to 22 represents the plots for  over the calculation domain for various values of M=5, 10, 20 

at L=10 and for different resolution levels for L=20, 25, 30 at M=10 respectively. It depicts that, the increase in 

M leads to increases slightly with a fixed value of L and symmetry or spread of the curve decreases. The 

curve and spread values of   increases with an increase in the resolution level L at constant M. Also, it predicts 

 exhibit second spike curve due to pressure spike for lower value of L and M, which decreases with increase 

in load and speed.  

 

VIII. CONCLUSION 
The preconditioned Newton-GMRES method with restarted comprising DWT with Daubechies D6 

wavelet is an elegant and more efficient numerical method. This method converges much faster and requires less 

computational time (CPU) as compared to other classical numerical methods. This method can be used as an 

alternative method for the solution of EHL problems with Newtonian and non-Newtonian fluids. The minimum 

film thickness of thermal non-Newtonian case decreases as compared to isothermal non-Newtonian cases. 

Pressure spike increases slightly in thermal effect as compared to isothermal conditions. Also, pressure spike 

value decreases as compared to Newtonian cases, whereas central and minimum film thickness of non-

Newtonian Eyring fluid model increases as compared to Newtonian model.  
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