
ISSN (e): 2250 – 3005 || Volume, 10 || Issue, 7|| July – 2020 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 1

Extending Agile Methods with Requirements Engineering

Huayu Liu 1, Jürgen Jung 2, Quandang Sun 1
1Student,

Department of Computer and Information Engineering,

Henan Normal University, 46 Jianshe East Road, Xinxiang, China
2Professor,

Department of Computer Science and Engineering,

Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt, Germany
1Assistant professor,

Department of Computer and Information Engineering,

Henan Normal University, 46 Jianshe East Road, Xinxiang, China

Date of Submission: 10-07-2020 Date of acceptance: 26-07-2020

I. INTRODUCTION

Garbage in, Garbage out', this is the iron law of the IT industry. The quality of requirement input affects or even

determines the quality of the process and delivery. Agile methods for software development have become

popular over the past decades as they helped with gaining fast success in software development projects and

reducing project risks. Classical methods, such as the waterfall model or the V-model, tend to be heavy-weight

and document driven as they are following a strict phased approach for managing the overall project. On the

contrary, agile methods (like Scrum or eXtreme Programming) focus on short release cycles for delivering

tangible results in an iterative way [1]. They also reduce the management overhead significantly as they
emphasize the role of the software developer as a key player in the project: the value (i.e. running software) is

created by the developer.

Despite a plethora of success stories and their significant impacts, agile methods cannot be applied to any kind

of software project successfully [2]. They assume a small and coherent team being at the same location with the

customer. Distributed development environments or software development in a strictly regulated environment

ABSTRACT
Agile methods for tend to improve the quality of software development projects by imposing a

strong customer focus and continuous risk mitigation with every iteration. It seems that they are
about to substitute existing development methods in professional environment. However, agile

methods are still no silver bullets as they have some limitations. They are designed for small

projects that require continuous customer feedback. They also suffer from supporting

internationally distributed development environments as customers and development teams need to

be at the same location. Methods like for example the Scaled Agile Framework (SAFe) were arising

since a couple of years in order to overcome the limitations of agile methods. They define

additional coordination stages and, therefore, impose some additional complexity on applying

them. The paper at hands aims at providing a pragmatic solution for the application of agile

methods in a global environment. Many organizations already adopted methods and tools for

requirements engineering in the past and these can be combined with agile methods. The paper

summarizes requirements engineering and analysis agile methods with respect to gaps to
requirements engineering methods. It will then provide an overview on how requirements

engineering may complement today’s agile methods.

KEYWORDS: agile method, requirements engineering, global team, requirements repository

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 2

(e.g. medical or safety critical) are, therefore, not in the scope of agile methods. A couple of agile frameworks

have been developed recently in order to overcome the limitations of agile methods. Nexus and SAFe (Scaled
Agile Framework) are two representative frameworks that extend agile methods with additional, coordinating

activities and roles [3]. These frameworks are called “scalable” because they also allow for the development of

large and complex software systems.

However, these agile frameworks bring additional complexities on the management of software projects.

Furthermore, they rather focus on managing and synchronizing agile projects but lack support for aligning

projects with the whole corporation [4]. The paper at hand is following a different approach by incorporating

Requirements Engineering into agile methods. The discipline of Requirements Engineering (RE) is well-known

and has been successfully implemented in many companies [5]. People are skilled in managing requirements

and corresponding tools are already available. In the agile development mode, how to improve the efficiency of

RE and ensure the quality of requirements input is a huge challenge. The approach suggested here aims at

extending agile methods with respect to:

 Distributed teams: RE supports collaboration within an agile team, even if team members are at different

locations.

 Project alignment: RE supports collaboration and communication among agile project teams

 Corporate requirements: RE supports following general requirements (e.g. regulations, compliance rules)

across all software projects.

The paper is structured as follows: Section 2 provides an overview of the requirements engineering discipline. It

presents typical roles involved as well as a life cycle for requirements. Section 3 summarises popular agile

methods, analyses them concerning their gaps with respect to requirements engineering and highlights the roles

of missing RE activities. Section 4 proposes the methods of filling in the RE gaps in agile methods. The

objective will be in reusing RE activities and roles in order to extend agile methods. RE will then be

coordinating activity for collaboration and communication. The application of such an approach is then
documented in section 5. It shows how Scrum is extended by RE in a global logistics company. Then we make

the conclusion in section 6.

II. REQUIREMENTS ENGINEERING
2.1 Purpose of Requirement Engineering

Requirement Engineering is the process of defining, documenting and maintaining the requirements.

Requirements engineering corresponds to the first stage before system design in the life cycle of software

systems development. Therefore, the purpose of requirements engineering is straightforward: determine

customer requirements and define all external characteristics of the system in the vision by identifying

stakeholders and their needs, and documenting these in a form that is amenable to analysis, communication and

subsequent implementation [6].
Requirements Engineering Process consists of the following main activities:

1. Requirements elicitation

2. Requirements specification

3 .Requirements verification and validation

4. Requirements management

2.1.1 Requirements Elicitation

This phase of requirements engineering focuses on collecting and gathering data and information from various

stakeholders in the project domain, including stakeholders, users, constraints, environment, standards, etc. [7].

But numerous factors can conspire to hamper your requirements elicitation efforts. The following are several

areas of potential elicitation risk and suggestions for how to avoid them [8]:
Product vision and project scope: Scope creep is more likely if the stakeholders lack a shared understanding of

what the product is supposed to be (and not be) and do. Early in the project, write a vision and scope document

that contains your business requirements, and use it to guide decisions about new or modified requirements.

Time spent on requirements development: Tight project schedules often pressure managers and customers into

glossing over the requirements because they believe that if the developers don’t start coding immediately, they

won’t finish on time. Record how much effort you spend on requirements development for each project so that

you can judge whether it was sufficient and improve your planning for future projects. Agile development

approaches allow construction to begin earlier than on projects following a waterfall life cycle.

Customer engagement: Insufficient customer involvement during the project increases the chance of an

expectation gap. Identify stakeholders, customers, and user classes early in the project. Determine who will

serve as the literal voice of the user for each user class. Engage key stake holders as product champions. Make
sure product champions fulfill their commitments so you elicit the correct needs.

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 3

Completeness and correctness of requirements specifications: Elicit user requirements that map to business

requirements to ensure that the solution will deliver what the customers really need. Devise usage scenarios,
write tests from the requirements, and have customers define their acceptance criteria. Create prototypes to

make the requirements more meaningful for users and to elicit specific feedback from them. Enlist customer

representatives to review the requirements and analysis models.

2.1.2 Requirements specification
This activity is used to produce formal software requirement models from communication. All the requirements

including the functional as well as the non-functional requirements and the constraints are specified by these

models in totality.

The models used at this stage include ER diagrams, data flow diagrams (DFDs), function decomposition
diagrams (FDDs), data dictionaries, etc. But just because requirements are communicated on paper or in writing

doesn’t mean they are actually understood. [8]

Requirements understanding: Different interpretations of the requirements by developers and customers lead to

expectation gaps, in which the delivered product fails to satisfy customer needs. Peer reviews of requirements

by developers, testers, and customers can mitigate this risk. Trained and experienced business analysts will

acquire the right information and write high-quality specifications. Creating models and prototypes that

represent the requirements from multiple perspectives can reveal fuzzy, ambiguous requirements.

Time pressure to proceed despite open issues: It is a good idea to mark areas of the requirements that need

further work with TBD (to be determined) or as issues, but it’s risky to proceed with construction if these

haven’t been resolved. Record who is responsible for closing each open issue and the target date for resolution.

Ambiguous terminology: Create a glossary to define business and technical terms that might be interpreted

differently by different readers. Requirements reviews can help participants reach a common understanding of
terms and concepts.

Design included in requirements: Design elements that are included in the requirements place constraints on the

options available to developers. Unnecessary constraints inhibit the creation of optimal designs. Review the

requirements to make sure they emphasize what needs to be done to solve the business problem, rather than

dictating the solution.

2.1.3 Requirements verification and validation

Verification: It refers to the set of tasks that ensure that software correctly implements a specific function.

Validation: It refers to a different set of tasks that ensure that the software that has been built is traceable to

customer requirements. If requirements are not validated, errors would process to the successive stages resulting

in a lot of modification and rework.
The main steps for this process include:

1. The requirements should be consistent with all the other requirements i.e. no two requirements should conflict

with each other.

2. The requirements should be complete in every sense.

3. The requirements should be practically achievable.

Reviewing of requirements with stakeholders, buddy checks, making test cases, etc. are some of the methods

used for this. In addition, ensure that traceability is achieved during the validation and verification process to

facilitate the later audit trail [7].

2.1.4 Requirements management

Requirement management is the process of analysing, documenting, tracking, prioritizing and agreeing on the

requirement and controlling the communication to relevant stakeholders. Due to the tendency of changing in
requirements, it should be ensured that the SRS (Software Requirements Specification) is as modifiable as

possible to incorporate changes in requirements specified by the end users at later stages, too. Being able to

modify the software as per requirements in a systematic and controlled manner is an extremely important part of

the requirements engineering process.

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 4

2.2 Requirement Life Cycle

Requirement Life Cycle

1.Create
Requirement

2.Describe
Requirement

6.Deployment

5.Testing
3.Plan

Implementatio
n

 4.Implementation

Figure 1: Requirement Life Cycle

The above picture is our definition of the requirements life cycle, which is similar to the software development

life cycle, but the main difference is that the requirements lifecycle focuses on a single requirement developing
only. In software development, the focus is on a complete system. However, in the entire process of the software

development life cycle, there are still missing some stages which related to requirements, such as requirements

analysis and requirements design. Because the requirement life cycle only covers the planning and

implementation of one requirement.

The requirement life cycle consists of following activities [9]:

Create Requirement: The business requirement is created in this phase and stored in a requirements repository.

It focuses on the main stakeholder—which is the customer. The main stakeholder has a new idea about the

software system (i.e. product) and it will be recorded as a new requirement. The description is rather high level

and needs to be refined later together with a requirements manager. This description will be the common

reference for the software developer in order to implement the new requirement.

Describe Requirement: Each requirement needs to be described in detail so that it can be used for system
implementation. The business stakeholder will detail out the description together with a business analyst or a

requirement engineer. Meetings with Requirement engineer, stakeholders and Business analyst are held in order

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 5

to determine the requirements with respect to the following aspects: Who is going to use the system? How will

they use the system? What data should be input into the system? What data should be output by the system?
These are general questions that get answered during the requirements specification phase. Requirements are

analysed for their validity and the possibility of incorporating the requirements in the system to be development

is also studied.

Finally, an entry in the requirement backlog is created which serves the purpose of guideline for the next phase

of the model. The testing team follows the Requirement Testing Life Cycle and starts the Test Planning phase

after the requirements planning is completed.

Plan Implementation: In this phase, the implementation of a requirement will be planned. The development

team needs to determine which modules are affected by the new requirement. They will also estimate the effort

required for implementing the requirement in the system. There are usually plenty of requirements and not all of

them can be implemented at once. Hence, the team needs to schedule the implementation of each requirement

based on effort and availability of resources.
Implementation: On receiving system design documents, the work is divided into modules / units and actual

coding is started. Since, in this phase the code is produced so it is the main focus for the developer.

Testing: After the code is developed it is tested against the requirement specification to make sure that the

product is solving the needs addressed and gathered during the requirements phase. During this phase all types

of functional testing as unit testing, integration testing, system testing, and acceptance testing are done as well as

non-functional testing are also done.

Deployment: After successful testing the product is delivered / deployed to the customer for their use.

As soon as the product is given to the customers, they will first do the beta testing. If any changes are required

or if any bugs are caught, then they will report it to the engineering team. Once those changes are made or the

bugs are fixed then the final deployment will happen.

2.3 Stakeholders in Requirements Engineering
Stakeholder analysis is a process of identifying a person, group or a company which can affect or get affected by

a decision, activity, or the outcome of the software project. It is important in order to identify the exact

requirements of the project and what various stakeholders are expecting from the project outcome [10].

2.3.1 Internal Stakeholder

An internal stakeholder can be a person, group or a company that is directly involved in the project. For example

：

Project Manager: Responsible for managing the whole project. Project Manager is generally never involved in

producing the end product, but he / she controls, monitors and manages the activities involved in the production.

1. Responses for project

2. Represents the customer and other stakeholders

3. Sets the directions for whole project

4. Acquires / distributes resources

5. Coordinates friction for all of stakeholders

Team Leader (Manager):

1. Takes input from PO (Purchase Order)

2. Shields team from external interferences

3. Coordinates the team / communication

4. Removes obstacles
5. Promotes Agile / coaching

6. Coordinates friction for the whole team

Requirement Engineer: According to product planning or project requirements, Requirement Engineer

cooperates with marketing, sales planning and other departments to analyze, clarify and optimize user needs,

and writes a demand analysis report based on original requirements, and collaborates with the technical

department to design prototypes

1. Identifies the need for needs, and can propose reasonable improvements to provide business units with better

cost-effective solutions

2. Refines demand coordination between users and R & D

3. Assesses the costs and benefits of demand

4. Collectes user satisfaction and varies feedbacks on the system, and regularly summarizes and suggestes
improvement plans

Project Team

1. Plans the individual projects / estimates

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 6

2. Works on all aspects of product development

3. Transforms a requirement into a product
4. Communicates

5. Reports obstacles

Company: The Organisation who has taken up the project and whose employees are directly involved in the

development of the project. Provides or distributes resources for the project

Funders: Provide funds and resources for the successful completion of the project

Business Analyst: Communicates with customers and let them understand data-driven processes and how they

can make products, services, software, and hardware more efficient and add value. They must articulate these

ideas, but they also must balance them with technical feasibility and financial and functional rationality.

Software Architect: This job responsibility is to transform the customer's needs into a standardized

development plan and text during the development of a software project, and to formulate the overall structure

of the project, and guide the entire development team to complete this plan.

2.3.2 External Stakeholder

An external stakeholder is the one who is linked indirectly to the project but has significant contribution in the

successful completion of the project. For example:
Customer: Specifies the requirements of the project and helps in the elicitation process of the requirement

gathering phase. Customer is the one for whom the project is being developed.

Supplier: Supplies essential services and equipment for the project.

Government: Makes policies which help in better working of the organisation.

III. AGILE METHODS AND REQUIREMENTS ENGINEERING
3.1 Overview on Agile Methods

What is an agile method?

Agile methods are approaches to develop software. They aim to give an organization the ability of delivering

fast, with high quality products and the highest priority to satisfy the customer. It can be done by delivering

early and continuous valuable software. And now that Agile is also applied outside software and needed to what

does it mean to be agile e.g. in Human Resources (HR), in marketing and sales [11].

When was it born?

In 2000, Agile Manifesto and the Twelve Principles were published. The Manifesto has four main values:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 From these four main values, the following principles are formulated. Those principles represent what

does it mean to be agile in detail:

 Working software is delivered frequently (weeks rather than months)

 Working software is the principal measure of progress

 Customer satisfaction by rapid, continuous delivery of useful software

 Even late changes in requirements are welcomed

 Close daily cooperation between businesspeople and developers

 Face-to-face conversation is the best form of communication

 Projects are built around motivated individuals, who should be trusted

 Continuous attention to technical excellence and good design

 Simplicity

 Self-organizing teams

 Regular adaptation to changing circumstances

There are multiple interpretations of agile methodology. These interpretations are different but in general they

focus on delivering products that matches budget, time with high quality and customer satisfaction. Here is the

requirement life cycle of the most popular agile methods:

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 7

3.2 eXtreme Programming (XP)

Exploration

Planning

Iterations to
First Release

Productionizing

Maintenance

Death

Lifecycle of a XP
Project

Figure 2. Life Cycle of a XP Project

What is eXtreme Programming (XP)?
Extreme programming is a lightweight and smart software development method. It depends on values of
correspondence, simplicity, courage [12, 13], and criticism. It breaks down complex development processes into

relatively simple small cycles. Through active communication, feedback and other series of methods, developers

and customers can be very clear about the development progress, changes, unresolved issues and potential

difficulties, and adjust the development process in a timely manner according to the actual situation.

When was it born?
Extreme Programming (XP) [14] was proposed by KentBeck in 1996. It is a software engineering methodology

and is one of the most productive methodologies in agile software development. As with other agile

methodologies, the fundamental difference between Extreme Programming and traditional methodologies is that

it places more emphasis on adaptability and difficulties. In March 1996, Kent finally introduced a new software

development concept, XP, into a project for DaimlerChrysler. XP is suitable for small team development.

What are its advantages

Extreme Programming is successful because it stresses customer satisfaction. Instead of delivering everything

you could possibly want on some date far in the future, this process delivers the software you need as you need

it. Extreme Programming empowers your developers to confidently respond to changing customer requirements,

even late in the life cycle.

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 8

3.3 Scrum

Figure 3. The Agile-Scrum Framework [15]

What is Scrum?
Scrum is an agile process framework for managing complex knowledge work, with an initial emphasis

on software development, although it has been used in other fields and is slowly starting to be explored for other

complex work, research and advanced technologies. It is designed for teams of ten or fewer members, who

break their work into goals that can be completed within timeboxed iterations, called sprints, no longer than one

month and most commonly two weeks, then track progress and re-plan in 15-minute time-boxed stand-up

meetings, called daily scrums.

When was it born?
Hirotaka Takeuchi and Ikujiro Nonaka introduced the term scrum in the context of product development in their

1986 Harvard Business Review article.

In the early 1990s, Ken Schwaber used what would become Scrum at his company, Advanced Development
Methods, while Jeff Sutherland, John Scumniotales and Jeff McKenna developed a similar approach at Easel

Corporation, referring to it as scrum.

Ken and Jeff worked together to integrate their ideas into a single framework, Scrum. They tested Scrum and

continually improved it, leading to their 1995 paper, contributions to the Agile Manifesto in 2001, and the

worldwide spread and use of Scrum since 2002.

What are its advantages?
Surm is a lightweight, iterative and incremental framework for managing complex work. The framework

challenges assumptions of the traditional, sequential approach to product development, and enables teams to

self-organize by encouraging physical co-location or close online collaboration of all team members, as well as

daily face-to-face communication among all team members and disciplines involved.

https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Stand-up_meeting
https://en.wikipedia.org/wiki/Stand-up_meeting
https://en.wikipedia.org/wiki/Hirotaka_Takeuchi
https://en.wikipedia.org/wiki/Ikujiro_Nonaka
https://en.wikipedia.org/wiki/New_product_development
https://en.wikipedia.org/wiki/Harvard_Business_Review
https://en.wikipedia.org/wiki/Ken_Schwaber
https://en.wikipedia.org/wiki/Jeff_Sutherland
https://en.wikipedia.org/wiki/Iterative_design
https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Colocation_(business)

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 9

3.4 Kan Ban

Figure 4. Kan Ban workflow

What is Kan Ban?

Kanban – literally translated from Japanese means a signboard or billboard – started life as a scheduling system

in the motor industry and is now one of the fastest growth areas in the agile market. It’s easy to grasp, simple to

implement and costs pretty much nothing. A big advantage to Kanban is that it can be used by individuals or

teams to manage their workload or on full-scale projects. It’s a brilliant introduction to working in an agile way

and there’s more to it than meets the eye [16]. Agile development draws on the visual management concepts

behind it. Kan Ban makes project management the biggest visualization, but Kan ban can manage the process,

record the details and history of the user story.

When was it born?

Kanban uses the rate of demand to control the rate of production, passing demand from the end customer up

through the chain of customer-store processes. In 1953, Toyota applied this logic in their main plant machine

shop.

What are its advantages

 Flexibility

 Maximum visualization

 Troubleshoot team communication

 Focus on continuous delivery

 Reduction of wasted work / wasted time

 Increased productivity

 Increased efficiency

 Team members' ability to focus

3.5 Gap Analysis

The agile methods presented in the previous section aim at managing requirements for agile projects. There are
some differences to classical requirements engineering which will be described in this section.

3.5.1 Requirement

(a) eXtreme Programming (XP)

In XP, they use plans to expend requirements at the beginning of the development. The team will do an activity

called Software Release Planning: Customers articulate requirements, and developers estimate development

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 10

costs and risks. The client develops a rough project plan based on development costs, risks, and the importance

of each requirement. The initial project plan is not necessary (or impossible) to be very accurate, because the
development costs, risks, and importance of each requirement are not static. Moreover, the plan will be

continuously adjusted to be precise during the implementation process [17].

In the development process, like scrum, XP needs to create an iteration plan, but the iteration length of a Sprint

of XP is roughly 1 ~ 2 weeks, and the iteration length of Scrum is generally 2 ~ 4 weeks: customers can always

see the developer’s work done, and can change requirement in time. In an iteration of XP, if a User Story has not

been implemented, you can consider replacing it with another requirement. The principle of replacement is that

the amount of time required to implement the requirements is equal.

(b) Scrum

Backlog is a special term in Scrum, which means a collection of to-do items. The Product Backlog is a

quantified user requirement that expresses itemized requirements that need to be developed. The Sprint Backlog

(task list) is a task that needs to be completed in one iteration. It is also the most used Backlog in the

development process. It is very detailed.

In Scrum they don’t use Demand analysis reports, as we know, Agile development follows a principle that

everything that is finally done is meaningful to customers. In Scrum, The Product owner create Backlogs, every
Backblog that is completed by Sprint is a function that allows users to use it completely. For the developer, he

will use the Demo method to show the results, and he will attach great importance to quality. In every sprint, the

develop team will create a Sprint Backlog to show the tasks.

Moreover, before every sprint is finished, no requirements can be added, and the Scrum Master is strictly

controlled, and the development team is not allowed to receive interference. But in XP, you can consider

replacing it.

(c) Kan Ban

Both Scrum and Kanban are process tools, but Kanban places more emphasis on visualizing workflows, limiting

ongoing work (WIP), measuring and managing processes, and clarifying process policies. Using (theoretical)

models to identify opportunities for improvement, Kanban does not use demand analysis reports, but uses user
cases to make backlogs. Compared with scrum, Scrum limits WIP by iteration and Kanban limits WIP by

process status [18] .

The core of the Kanban board are the to-do items. These individual items are all delivery focused and must

deliver business value directly or indirectly. For example, setting up a Kanban board is a legitimate item but a

meeting to discuss the to-do items is merely part of the main job. The items are business delivery focused and

not centred on activities. If an item on the backlog does not contribute to business goals, it should be removed.

3.5.2 Life cycle

(a) eXtreme Programming (XP)
We can describe Extreme Programming from the perspective of life cycle, first, start off by describing the

desired results of the project by having customers define a set of stories. As these stories are being created, the

team estimates the size of each story. This size estimate, along with relative benefit as estimated by the customer
can provide an indication of relative value which the customer can use to determine priority of the stories.

If the team identifies some stories that they are unable to estimate because they don’t understand all of the

technical considerations involved, they can introduce a spike to do some focused research on that particular

story or a common aspect of multiple stories. The spike-time can happen before the beginning of normal

iterations,this time used to do some deeply research on project.

Next, the entire team gets together to create a release plan that everyone feels reasonable. This release plan is a

first pass at what stories will be delivered in a particular quarter, or release. The stories delivered should be

based on what value they provide and considerations about how various stories support each other.

Then the team launches into a series of weekly cycles. At the beginning of each weekly cycle, the team

(including the customer) gets together to decide which stories will be realized during that week. The team then

breaks those stories into tasks to be completed within that week.

At the end of the week, the team and customer review progress to date and the customer can decide whether the

project should continue, or if sufficient value has been delivered.

(b) Scrum
The Scrum Life cycle consists of a series of Sprints, where the end result is a potentially shippable product

increment. Inside of these sprints, all the activities necessary for the development of the product occur on a

small subset of the overall product.

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 11

Below is a description of the key steps in the Scrum Lifecycle:

 Establish the Product Backlog.

 Planning. The product owner and development team conduct Sprint Planning. Determine the scope of the

Sprint in the first part of Sprint Planning and the plan for delivering that scope in the second half of Sprint

Planning.

 Implementation. As the Sprint progresses, development team perform the work necessary to deliver the

selected product backlog items.

 Daily scrum. On a daily basis, the development team coordinate their work in a Daily Scrum.

 Review. At the end of the Sprint the development team delivers the Product Backlog Items selected

during Sprint Planning. The development team holds a Sprint Review to show the customer the increment

and get feedback. The development team and product owner also reflect on how the Sprint has proceeded

so far and adapting their processes accordingly during a retrospective.

 Retrospect. The Team repeats steps 2–5 until the desired outcome of the product have been met.
The first and second (Generate ideas, Description) items of the traditional requirement life cycle that are not

clearly present in the scrum lifecycle, and the sixth step(Retrospect) is an extra step than the traditional

requirement life cycle, it means Scrum can work in Sprint progresses, and this is one of advantages for Scrum.

This does not explain the nature of Scrum or agile product development in depth. However, the ability to

manage changing priorities, increased productivity, improved project visibility, improved team morale, higher

effectiveness, quality, and business stakeholder satisfaction with this approach speak for themselves [19].

(c)Kan Ban

The first and second (generate ideas, description) items of the traditional requirement life cycle that are not

clearly present in the Kan Ban life cycle. Planning is same like the third items of the traditional, In Progress and

Developed are consistent with Step 4 (Implementation).
Kanban does not specify a time limit iteration, it can be planned, released, and process improvement separately.

It can be event driven instead of a time limit, and it uses the development cycle as the measurement data for plan

and process improvement.

3.5.3 Roles
(a)eXtreme Programming (XP)

In XP, they don’t have a clear need for engineers and business analysts, their work has been split into other roles

on the team, Customers directly submit user stories and requirements to the team.

The customer in XP is the other half of the essential duality of extreme programming. The programmer knows

how to program. The customer knows what to program. But the customer is willing to learn just as much as the

programmer is. Being an XP customer is not easy. There are skills you have to learn, like writing good stories,
and an attitude that will make you successful.

The best customers are those who will actually use the system being developed, but who also have a certain

perspective on the problem to be solved.

Since a lot of testing responsibility lies on the shoulders of the programmers, the role of tester in an XP team is

really focused on the customer. You are responsible for helping the customer choose and write functional tests.

If the functional tests aren't part of the integration suite, you are responsible for running the functional tests

regularly and posting the results in a prominent place. They have done some parts of BA and requirements

engineer in normal Requirement Development. Because they can selectively prioritize testing based on

feasibility.

(b)Scrum

Different from the traditional requirements analysis process, Scrum don ’t have requirement engineers and

business analysts, but the Product Owner will finish their duty.
Product Owner, the one who can determine "What the team will do", is responsible for docking with customers

and create Backlog.

Scrum Master, Scrum Master works closely as a Team Leader and Product owner, and he can help team

members in a timely manner. The ScrumMaster needs to know what tasks have been completed, which tasks

have begun, which new tasks have been discovered, and which estimates may have changed. The ScrumMaster

needs to update according to the above situation to reflect the daily workload and how many outstanding

burndown charts (Burndown Chart) [20].

(c)Kan Ban

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 12

In fact, there is not too much clear role division in the Kanban process. Kanban is shared by the entire team and

is responsible for all tasks that need to be delivered. Although some teams have hired agile coaches, unlike
Scrum, there is no "Kanban Master" that makes everything run smoothly.

IV. ROLE IN AGILE REQUIREMENTS ENGINEERING

4.1 Roles and responsibilities

4.1.1 Agile requirements engineer
The agile requirements engineer is the designated role for specific activities to ensure that requirements

engineering is implemented in agile development.

An agile requirements engineer is the bridge between customers and developers in a distributed environment. A

good analysis of demand is the key to whether the product can meet the needs of users. Requirements engineers

control the vane of project development based on understanding users and technology.

4.1.2 Responsibilities
Collect requirements: The purpose of collecting requirements is to determine the needs of various aspects of

the target system. The main tasks involved are to establish a method framework for obtaining user needs, and to

support and monitor the process of obtaining requirements.

Specify requirement: In this stage, as a requirement engineer, you have known the requirements of your

customer; you should use some models and diagrams (use case diagrams, activity diagrams, sequence diagrams

etc.) to create Requirements Specification. The requirement specification is used as the production basis for

customer reference, future development, and testing. Therefore, your work results are basically mapped on this

requirements specification. This document is the top priority and is the basis for judging your work.

Update requirement: Requirements update is a review of the work in the requirements specify phase to verify

the consistency, feasibility, completeness, and validity of the requirements documents.

Conduct customer requirement surveys and organize customer needs, responsible for demonstrating the
completed project module to customers and collecting opinions on the completed module.

Manage requirement status: In the process of requirements management, agile requirements engineers can

plan priorities based on the content of the requirements, and prioritize important requirements, and make timely

adjustments based on feedback during the development process

4.2 RE in Scrum
Each traditional Scrum Team includes three key roles: Product Owner, Scrum Master and Scrum Team. We try

to substitute the four responsibilities of agile requirements engineer and agile requirements engineer’s role into

traditional scrum development.

“Collecting requirements” can belong to Product Owner (PO) and Agile Requirement Engineer. In a traditional

Scrum team, the project manager has the opportunity to communicate with the business user. We decide to add

agile requirements engineers on this basis, a role that can be both customer-facing and development team-facing

to complete the key "requirement in" link.

“Specify requirement” belongs to Product Owner (PO), supported by the agile requirements Engineer. The team

uses the backlog to specify requirements, the product owner maintains the Product Backlog and ensures that

everyone knows what is included and its priority. The product owner may need the support of others, such as an
agile requirement engineer.

“Updating requirement” belongs to Agile Requirement Engineer and ScrumMaster (SM). When a business user

creates a new requirement, he will submit a requirement description to Agile Requirement Engineer, and then

Agile Requirement Engineer will discuss the details of the new requirement with the ScrumMaster and add the

new requirement to the next sprint.

4.3 RE in eXtreme Programming (XP)

Every role in scrum can “Manage requirement status” . Development team and ScrumMaster can manage

requirements through Scrum meetings which all roles are present. The product owner and requirement engineer

can change the priority status of requirements according to the actual situation.

The Roles that have been found effective in Extreme Programming are Developer (also called Programmer by

some teams), Customer, Manager (also called tracker), and Coach. When we add the four responsibilities of

agile requirements engineer and agile requirements engineers in XP, we can redefine their mission:

Customer and agile requirements engineers are responsible for “ collecting requirements ” and “ Specify

requirements”. The customer will write the necessary and sufficient details in the required story. Customers can

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 13

become potential agile requirements engineers. After collecting user stories, agile requirement engineer sorts the

requirements by priority and estimates the iteration time required to realize these user stories.

“Updating requirement” belongs to Manager. Managers will schedule and conduct release planning and iteration

planning meetings, and participate in assessments with the team to provide feedback at the team and individual
levels on how reality fits previous estimates, which ultimately helps them make better estimates next time.

Every role in XP can “Manage requirement status”. Face-to-face communication is the first choice. Through the

management of the status of the meeting and the realization of pairing programming, not only team members

will participate, but customer representatives will always be on site.

4.4 RE in Kanban
In KanBan, roles are not explicitly specified, and they are always developed as a team. So we can substitute the

agile requirements engineer into the Kanban development team member.

Agile requirements engineers are responsible for “collecting requirements” , “Specify requirement” and “

Updating requirement”: Agile requirements engineers can obtain the requirements from the company's product

department, and then enter the requirements into the backlog. During this process, the tasks should be

reasonably released according to the team's situation and the appropriate priority should be set. After the project

goes online, new requirements may be generated. Agile requirements engineers are always responsible for

updating new requirements into the backlog.

Every role in Kanban can “Manage requirement status”. Not only Agile requirements engineers can manage

requirement status, but also the programmer can manage that. Actual Cycle Days is the time it takes to complete

a task. If this time differs greatly from Estimated Cycle Days, the entire team will have to review and summarize
what went wrong and change the details of requirement.

V. CASE STUDY

The extended version of Scrum as described in section 4.1 has been applied in a global logistics company. There

were three agile teams, each of which was developing an individual system:

 Station management system: planning and controlling logistics flows in the warehouses and hubs

 Customer order system: processing customer orders and billing

 Webservices API: Global API (Application Programming Interface) for large customers

Each of these systems is used by individual departments but need to be integrated. The API offers webservices

for large customers so that they can submit shipping orders to the customer order system and track the

shipments’ status (station management system). Product owners and development teams are distributed across

several countries.

Due to the limitations of agile methods, a fan-in requirements management process has been implemented:

 A global requirements manager and a central repository for requirements have been implemented

 All requirements need to be documented in the central repository. There are workspaces for each of the

three teams, but each team member can read all requirements (including the ones of other teams).

 The requirements manager supports business stakeholders with writing requirements and sore them in the

repository.

 The requirements manager coordinates the assignment and consolidation of requirements together with the

product owners.

 The requirements manager collaborates with the scrum master and the agile teams.

A business user who wants a new requirement to be implemented will first align with the requirements manager.

The business user needs to write the requirements description and the requirements manager supports him/her in

case of any question or concern. The requirements manager then discusses the new requirement with all product
owners. They can check whether a similar requirement already exist and to which team it should be assigned.

This will foster re-use as several requirements can be bundled and the corresponding software feature be reused

by others. Prioritization is done by all product owners, facilitated by the requirements manager.

Any kind of information concerning a requirement needs to be provided or updated in the central repository.

Hence, the lifecycle of a requirement is maintained by the whole team in the tool. The development team needs

to change its status to “in development” after starting to implement implementation. The development team is

also responsible for updating the status for each phase according to the life cycle. Any kind of change in a

requirement needs to be done by the person who is currently in charge of it. If the developer needs more details,

he or she consults the requirements manager and the product owner so that the change can be done.

Extending Agile Methods with Requirements Engineering

www.ijceronline.com Open Access Journal Page 14

This approach proved to be quite successful in the company as it only required minimal changes in the

organization and easily allowed for collaboration among distributed teams. The repository, furthermore,
provided transparency on the development status of all requirements.

VI. SUMMARY
The present paper describes an approach to combine agile software development methods with classical

requirements engineering. Agile methods are very popular today as they help with gaining early successes in

software development by focusing on customer needs and reducing risk. However, they still have some

restrictions in distributed environments and large projects. Instead of adopting one of the appearing frameworks

for scaling agile methods, the approach in this paper starts with applying concepts and roles that are already

common in today ’ s organisations. There are certified requirements engineers available that can support

collecting and specifying requirements for agile teams. Such a requirements engineer can bridge geographical

distances and distribute requirements over related projects.

The approach presented here is based on a literature review and practical experience by the authors. It has been
adopted in an international company with the headquarter in Germany. Customers (i.e. the users of the system)

are working globally and development teams are located in various countries. The agile requirements engineer

need to collect requirements globally and assign them to the corresponding team. He/she also helps with

describing requirements in more detail as business users are not experienced with formal descriptions. Managing

requirements is a shared responsibility between all stakeholders (product owner, agile requirements engineer,

development team).

Research is only at an early stage as the approach will have to be evaluated in further organisations. This will

support improving the approach and make it more robust for a professional environment. We especially aim at

introducing the approach to international companies (e.g. China). This will also show whether further

requirements engineering concepts can be adopted so that agile methods can be extended, but without adding

administrative overhead.

REFERENCES
[1]. F.Anwer,S.Aftab,S.S.Muhammad Shah and U.Waheed, ”Comparative Analysis of Two Popular Agile Process Models: Extreme

Programming and Scrum”, Int J. Computer Science and Telecommunications , Vol. 8, no. 2, 2017

[2]. TURK,D. Limitations of agile software processes. International Conference on Extreme Programming & Flexible Processes in

Software Engineering. 2002

[3]. Uludag, M. , Kleehaus, M. , Dreymann, N. , Kabelin, C. , & Matthes, F. Investigating the Adoption and Application of Large-Scale

Scrum at a German Automobile Manufacturer. 14th ACM/IEEE International Conference on Global Software Engineering. ACM,

2019

[4]. Uludag, M. , Kleehaus, M. , Caprano, C. , & Matthes, F. Identifying and Structuring Challenges in Large-Scale Agile Development

Based on a Structured Literature Review. 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference. IEEE,

2018.

[5]. Mahmood Niazi. Improving the requirements engineering process: a process oriented approach, 2002.

[6]. Nuseibeh, Bashar, Easterbrook, & Steve. Requirements engineering: a roadmap. proc icse the future of software engineering may, 35--

46, p. 1, 2000.

[7]. Isonkobong Udousoro. Effective Requirement Engineering Process Model in Software Engineering. 8(1), p. 3, 2020.

[8]. Karl Wiegers, Joy Beatty, ”Software Requirements (Developer Best Practices 3rd Edition” Microsoft Press; 3 edition, p. 543-545,

2013.

[9]. Jilvan Pinheiro, ”Software Development Life Cycle (SDLC) phases” ,https://medium.com/@jilvanpinheiro/

[10]. Ralph Young, & Ralph Young. The requirements engineering handbook.. DBLP, 2003.

[11]. Saad Abdullatif Alhuzami. “Engineering in Agile Software Development”. King Saud University.

[12]. Zainab Sultan, Rabiya Abbas, Shahid Nazir, & S. Asim, Analytical review on test cases prioritization techniques: an empirical

study. international journal of advanced computer science & applications, 8(2), 2017.

[13]. Sehrish Alam, Shahid Nazir Bhatti & Dr. Amr Mohsen Jadi. Impact and Challenges of Requirement Engineering in Agile

Methodologies: A Systematic Review. 8(4), 2017.

[14]. Dominik Maximini. The Scrum Culture. Springer International Publishing, 2015.

[15]. Scrum vs Waterfall vs Agile vs Lean vs Kanban , https://www.visual-paradigm.com/scrum/scrum-vs-waterfall-vs-agile-vs-lean-vs-

kanban/

[16]. Jutta Eckstein ,John Buck, ”Company-wide Agility with Beyond Budgeting, Open Space &Sociocracy: Survive & Thrive on

Disruption”, CreateSpace Independent Publishing Platform, 2018.

[17]. Erich Gamma,”Extreme Programming Explained”, p. 6, http://index-of.co.uk/.

[18]. Ahmad, M. O. , Dennehy, D. , Conboy, K. , & Oivo, M. Kanban in software engineering: a systematic mapping study. Journal of

Systems & Software, S0164121217302820, p. 5. 2017.

[19]. Boehm, Barry, Turner, Richard. “Balancing Agility and Discipline: A Guide for the Perplexed” lecture notes in computer science,

108(7):316 - 325, 2004.

[20]. Moreira, Mario E, ”The Agile Enterprise : Building and Running Agile Organizations / by Mario E. Moreira”, Pearson Education

Limited, p. 82-83, 2015.

https://medium.com/@jilvanpinheiro?source=post_page-----40d46afbe384----------------------
https://medium.com/@jilvanpinheiro/software-development-life-cycle-sdlc-phases-40d46afbe384
https://www.visual-paradigm.com/scrum/scrum-vs-waterfall-vs-agile-vs-lean-vs-kanban/
https://www.visual-paradigm.com/scrum/scrum-vs-waterfall-vs-agile-vs-lean-vs-kanban/
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Erich+Gamma&text=Erich+Gamma&sort=relevancerank&search-alias=books
http://index-of.co.uk/
https://hds.hebis.de/fuas/Search/Results?lookfor0%5b%5d=Moreira,%20Mario%20E&type0%5b%5d=author&lastposition

	Extending Agile Methods with Requirements Engineering
	III. AGILE METHODS AND REQUIREMENTS ENGINEERING
	Figure 3. The Agile-Scrum Framework [15]
	3.5.3 Roles

